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Preface 

This book is not for microwave engineers; the engineering literature on the 
subject of microwave measurements is already ample. This book has been written 
for three groups of readers. First, for students, who it is hoped will find it a 
readable introduction to laboratory procedures. Second, for technicians who are 
working with coaxial instruments and components. Third, for scientists and 
engineers from other fields who must make microwave measurements in the 
course of their research. 

Throughout most of the book we have assumed of the reader only a famili­
arity with the basic theory of alternating currents, including the representation 
of ac quafltities by complex phasors and the elementary algebra of complex 
numbers. An exception is the optional Chapter 4, where we have presented some 
theoretical material. Even here, an acquaintance with the solutions to the one­
dimensional wave equation will see the reader through quite adequately. 

The efforts of many persons besides the author have gone into the creation 
of this handbook. Mrs. Gladys J. Carter typed the manuscript (several times}, 
Mrs. Barbara R. Mucciaccio set the text and equations in type, and Mrs. JaneS. 
Putnam prepared the drawings. Layout was done by Mrs. Wilna I. Tannahill, and 
editorial supervision was capably performed by Miss Audrey J. Boyan. The en­
tire handbook was read both in draft and in proof by Mr. Douglas M. Woodard 
of General Radio's Microwave Group. He has made an invaluable contribution 
to the book by ensuring the accuracy of formulas and numerical examples (but 
by the same token he cannot escape responsibility for any errors that remain). 

D.A.G. 
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CHAPTER 1 

Introduction 
to Coaxial Transmission Lines 

Traveling Waves 

1.1 FIELDS IN COAXIAL LINES 

Although an infinite number of electromagnetic field configurations, or 
modes, as they are called, can propagate along a coaxial transmission line, the. 
one we are almost always interested in is the principal or transverse electro­
magnetic (TEM) mode, because except in rare instances coaxial lines are intended 
to operate in this mode. The name "transverse electromagnetic" derives from 
the fact that both the electric and magnetic fields belonging to the TEM mode 
are entirely normal to the direction of propagation. All the higher modes have, 
in addition to the transverse fields, components of either the electric or magnetic 

field in the direction of propagation. 
Not only coaxial lines but also parallel-wire lines, strip lines, in fact all 

transmission lines having two or more conductors, allow propagation of TEM 
waves. Like the coaxial line, these other multiconductor transmission lines are 
almost invariably intended to work in the TEM mode, although they too have 
higher modes of propagation. Hollow waveguides, on the other hand, are trans­
mission I ines that have just a single conductor, and they will not support TEM 
waves. Waveguide transmission must therefore utilize a higher mode. t 

Unguided waves in an unbounded medium (that is, free electromagnetic 
radiation) are transverse electromagnetic and share all the properties that char­
acterize principal ·mode waves on transmission lines. 

Waves of any frequency, from de upward, can propagate in the principal 
mode. Higher-mode waves propagate only above certain cutoff frequencies that 
depend on the cross section of the guiding structure and on the particular mode. 
The possibility of propagation in the higher modes normally limits the usefulness 
of a coaxial line to frequencies below the lowest higher-mode cutoff. 

Figures 1.1-1 and 1.1 -2 show the fields belonging to the principal mode in 

an ideal, lossless coaxial line. The electric field has radial lines of force which 
terminate on the conducting surfaces. The magnetic field is tangential; its lines 
of force are concentric, circular loops around the inner conductor. Both fields 

tproperly speaking, any transmission line is a waveguide, and we should probably be talking 
about "coaxial waveguides." To most people, however, "waveguide" still connotes a hollow 
pipe, and we hope we may be forgiven for using old-fashioned terminology when we talk 
about coaxial "transmission lines." 
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Figure 1.1-1. Electric field (E) and magnetic field (H) belonging to the principal 

mode in a coaxial line. 

are most intense at the surface of the inner conductor and decrease in intensity 
inversely with increasing radius. The instantaneous magnitude of the electric 

field at a distance r(meters) from the axis is 

v 1 
E = --b- · ; (volts/meter) 

loge-
a 

( 1.1-1) 

where v is the instantaneous potential difference across the line in volts and a 

and b are the radii of the inner and outer conductors in meters. The instantan€7 

ous magnitude of the magnetic field is 

i 1 
H = -

2 
· - (amperes/meter) 

7r r 

where i is the instantaneous current in amperes. 

(1.1-2) 

Example: Electrical breakdown of air at a pressure of one atmosphere 
occurs when the electric field intensity is around 104 volts/em. What is 

the breakdown voltage of standard 9/16-inch 50-ohm coaxial line (outer 

conductor I D = 0.563 inch, inner conductor 00 = 0.244 inch)? 
Breakdown will occur where the electr ic field is strongest, at the 

surface of the inner conductor. Therefore the breakdown voltage 
v(breakdown) will be given by ( 1.1-1) with r =a and E =£(breakdown): 

b 
v(breakdown) = a loge - · £(breakdown) 

a 

The numbers must have the right units before they are plugged into the 
formula. £(breakdown) 104 volts/em = 104 volts/1 o-2 meter = 
106 volts/meter. a = Y, X 0.244 inch = Y, X 0.244 X 0.0254 meter = 

0.0031 meter. 
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b %X 0.563 inch 0.563 
loge a= loge % X 0.244 inch = loge 0.244 =loge 2.32 = 0.842 

Finally, then, v(breakdown) = 2.61 X 103 volts, or about 2.5 kilovolts. 

(a) 

I .. 2b--~ 

(b) 

v 
E= • -

log b r 

H= 

ea 

I 

27T 
• 

r 

COAX-HB -12 

Figure 1.1-2. Cross-section views of the principal-mode fields. The radii of inner 
and outer conductors are a and b. (a) The electric field E. v is the instantane­
ous voltage between the conductors. The inner conductor is positive and the 
direction of the electric field is from the positive to the negative conductor. 
(b) The magnetic field H. The instantaneous current i flows out of the paper (e) 
in the inner conductor and into the paper (o) in the outer conductor. 
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Figure 1.1-3. (a) Longitudinal section of coaxial line showing currents, charges, 
and fields in a TEM traveling wave moving toward the right. Arrows on inner 
and outer conductors show direction of current; plus and minus signs show 
polarity of charge. Radial lines represent the electric field. Circles indicate 
magnetic lines of force going into the paper; dots, ones coming out. (b) Graphs 
of voltage and current associated with the wave shown in (a) as a function of 
position. Voltage is called positive when inner conductor is positive; current is 
called positive when it flows to the right in the center conductor. 
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Figure 1.1-3(a) shows in longitudinal section the essential features of a 
sinusoidal traveling wave that is propagating toward the right along a coaxial line. 
Immediately below, in (b), graphs show the axial distribution of voltage and cur­
rent at the same instant. The distance between two planes such as aa' and ee' 
that are exactly one spatial cycle apart is the wavelength, A.. The+ and - signs in 
(a) indicate the charge on the conductors and the radial lines are electric lines of 
force. We have chosen to call the voltage positive when the center conductor is 
positive, as it is at the plane aa'. The arrows drawn on the conductors in (a) in­
dicate current direction. The symbols o and • between the conductors indicate 
magnetic lines of force; o is a line going into the paper, • is one coming out. We 
have taken the current as positive when it flows to the right in the center con­
ductor. Notice that currents, charges, and fields all reverse from one half-cycle 
to the next. Notice too that the electric and magnetic fields, hence voltage and 
current, are in phase. t This relation is characteristic of a traveling wave although 
not of a standing wave, as we shall see later in the chapter. 

Is there something about the fields of Figure 1.1-3 that tells us that the 
wave is traveling to the right rather than to the left? The answer is yes. Consider 
for example the plane aa'. Current is flowing from left to right in the positive 
wire (center conductor) and from right to left ih the negative wire (outer con­
ductor). Now, we know that current flows out of the positive terminal of a 
source and into the negative terminal, and that it flows into the positive terminal 
of a load and out of the negative terminal. Hence we conclude that energy is 
flowing from left to right at aa'. At a plane such as cc', where the voltage and 
current are both reversed, the same argument again shows that energy is flowing 
from left to right. If we wanted to change the figure to show a wave moving to­
ward the left we would have to reverse either the electric fields (charges and volt­
ages) or the magnetic fields (currents), but not both. 

1.2 VELOCITY, PHASE CONSTANT, AND ELECTRICAL LENGTH 

The velocity of propagation of principal-mode waves on a uniform, lossless 
line is the same as the velocity of unguided waves (which, as we have said, are 
also TEM) in the medium that separates the conductors. Thus, if the space be­
tween the conductors of a lossless coaxial line were evacuated, the waves would 
travel at a speed vTEM (vac) = 2.998 - ... X 108 = 3 X 108 meters/second, the 
much publicized velocity of light in vacuum, for which physicists usually write c. 

Loss due to imperfect conductors slows down the waves. In practical high­
frequency lines this effect is too small to be of any consequence except under 

tThis is equivalent to saying that the characteristic immittance is real, which, as we shall see 
in Section 1.3, is not quite true of a lossy line. 
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-3 X 10-
3 
'-------'------'----------' 

IOMHz IOOMHz IGHz lOG Hz 
frequency coAx.Hs.J2 

Figure 1.2-1. The effect of conductor 
loss on the velocity of propagation in 
General Radio 9/16-inch 50-ohm preci­
cision silver air-dielectric line. 
(After Zorzy, IEEE Transactions on Instru­
mentation and Measurement, Vol IM-15, No. 
4, December, 1966.) 

circumstances of the most exacting precision. The relative decrement 6v/v that 
conductor loss causes in the velocity of TEM waves in General Radio 9/16-inch 
50-ohm precision silver air-dielectric line is shown as a function of frequency in 
Figure 1.2-1. 

In an ordinary dielectric the speed vTEM (diel) of TEM waves is less than 

vTEM (vac). Physicists call the ratio 

vTEM (vac) 

VTEM (diel) 
=n ( 1.2-1) 

(which is a dimensionless number greater than unity) the index of refraction of 
the particular material because it is the difference in the velocity of light in two 
media that causes refraction at an interface. Engineers often describe the reduc­
tion in the velocity of waves in a cable due to the presence of a dielectric between 
the conductors in terms of a number called the velocity factor, which is just the 
reciprocal of the index of refraction. 

VTEM (diel) 
velocity factor= < 1 

vTEM (vac) 
(1.2-2) 

Example: When we look up the optical index of refraction of polyethyl­
ene we find figures that are close to 1.5. Now, the reciprocal of 1.5 is 
0.67, which as a matter of fact is a typical velocity factor for a cable filled 

with solid polyethylene. Actually this agreement is I ittle more than co­

incidental. One would be naive to expect the velocity of electromagnetic 

waves in any material medium to be the same at microwave frequencies 

as it is at optical frequencies, five or six orders of magnitude higher. 
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The velocity of TEM waves is determined by two properties of the medium 

according to the relation 

v= (meters/second) (1.2-3) 

where J1 is the medium's magnetic permeability (henrys/meter) and € is its electric 
permittivity (farads/meter). t The permeability of vacuum, J1(vac), is a defined 
number exactly equal to 47T X 10-7 henry/meter. The permittivity of vacuum, 
€(vac), is an experimental number equal to 8.85 + ... X 10-12 farad/meter. 

In dielectric media the permeability has its vacuum value but €(diel) is al­
ways larger than €(vac), often many times larger. The dimensionless ratio 
€(diel)/€(vac) is called the relative permittivity or dielectric constant of the ma­
terial in question and is represented variously by €,, K, k, K, and, regrettably, 
quite often by €. 

€(diel) 
€ =--­

r €(vac) 
(1.2-4) 

Since the velocity of TEM waves depends inversely on the square root of €, the 

velocity in a dielectric medium may be written 

. vTEM (vac) 
VTEM (dlel) = --'-':..c:._ __ 

..re;-
( 1.2-5) 

Example: The dielectric constant of dry air at one atmosphere and 23 

degrees Celsius is 1.00068. What is the velocity factor of an air-dielectric 
coaxial line? 

If we compare (1.2-2) with (1.2-5) we see that the velocity factor is 

equal to 1/.JE;. One can find the square root of a number that is very 

close to unity simply by taking the first term of a binomial series: 

( 1 + x)±Y2 = 1 ± % x. Thus the velocity factor of an air-dielectric line is 

1 - '12(0.00068) = 0.99966, which is so close to unity that the difference 

between air and vacuum can almost always be ignored. 

VTEM (air) :: VTEM (vac) 

tThe basic system of units used by electrical engineers is the meter-kilogram-second­
ampere (mksA) system. The practical electrical units- volts, amperes, watts, farads, ohms, 
etc - belong to the mksA system. The reader should be wary of two things: First, physi­
cists and chemists frequently continue to use the older Gaussian electrical units, a centi­
meter-gram-second (cgs) system based on the electrostatic unit (esu) of charge and the 
electromagnetic unit (emu) of current. Formulas in the Gaussian system have different con· 
stants and quantities have different sizes and different units. Second, in practice nobody 
bothers to stick to a single system anyway. Thus in this book we shall use centimeters and 
inches as well as meters, degrees and decibels as well as radians and nepers, and so forth. 
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Example: What is the velocity factor of a flexible cable filled with poly­

ethylene, E, = 2.25? 

velocity factor= 1/J 2.25 = 0.67 

We have already pointed out that vTEM(diel) varies with frequency, and 
so, therefore, must the dielectric "constant" E,. We shall say no more about this 
except to remark that variations in Er with frequency are accompanied by high 
dielectric . loss, and low-loss dielectrics such as polyethylene, polystyrene, and 
Teflont h~ve relative permittivities that are constant with frequency. 

The wavelength 'A. of a periodic wave is related to its frequency f and veloc­
ity v by the well-known formula 

Af= v (1.2-6) 

Since the velocity of TEM waves is the velocity in vacuum divided by Je;. the 
wavelength of principal-mode waves on a coaxial line is given by 

vTEM (vac) 
ATEM = JJE; 

ATEM (vac) 

re; (1.2-7) 

Thus the wavelength in an air-dielectric coaxial line is the same as the free-space 
wavelength, while that in a solid dielectric line is shorter by the factor 1/.JE;: 
(But this is not true of waves in hollow waveguides, which are not transverse 
electromagnetic. The phase velocity of non-TEM waves is greater than that of 
TEM waves, and it depends on the frequency. Therefore the guide wavelength is 
longer than the free-space wavelength and is not simply proportional to 1 /f.) 

The phase factor or phase constant~ tells how rapidly the phase of a sinus­
oidal traveling wave changes with distance along the line. If we imagine the 
traveling wave "frozen" at a particular instant of time,~ is the amount of phase 
change per unit distance. Since the phase changes by 2 rr radians or 360 degrees 
in one wavelength, we have 

~(radians/meter) = 
2
; 

360 
~(degrees/meter) = T 

(1.2-8) 

Example: What is the phase constant of waves in a flexible cable whose 
velocity factor is 0.67 if the frequency is 300 MHz? 

t Registered trademark of E. I. duPont de Nemours and Company. 
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The velocity in the cable is 0.67 X 3 X 108 meters/second= 
2.0 X 108 meters/second, so that the wavelength A. is 

2.0 X 108 meters/second 
-----,------ = 0.67 meter 

3.0 X 108 second- 1 

and the phase constant~ is 360 degrees/0.67 meter= 540 degrees/meter. 

We assume that the reader is familiar with the representation of sinusoi­
dally time-varying quantities by phasors or, as they are often called (incorrectly, 
from the mathematician's point of view), vectors in the complex plane. We will 
use upper-case Vs and I;s to denote phasor voltages and currents. Thus an in­
stantaneous voltage v(t) that varies with time according to 

v(t) = !V1cos(27Tft + ¢) ( 1.2-9) 

where lVI is the peak value of v{ t) .f is the frequency, and ¢ is the phase, wi II be 
represented by the phasor 

V=lv144> (1.2-10) 

COAX-HB-33 

The magnitude lVI of the phasor Vis equal to the peak value of the time-varying 
quantity v(t). and the angle¢ is equal to the phase angle of v(t). The important 
thing to notice is what happens if we change¢. We can see from ( 1.2-9) that in­
creasing _¢ has the same effect as decreasing t, so that after we have increased¢, 
v(t) will reach any particular value in its cycle at a smaller t, that is, earlier than 
it did before. Increasing the phase angle¢, which by convention means rotating 
the phasor V counterclockwise, makes v(t) occur earlier. 

1.2 VELOCITY, PHASE CONSTANT, AND ELECTRICAL LENGTH 9 



If V is the phasor that represents the instantaneous voltage v(t) due to a 
traveling wave on a transmission line, the angle</> of Vwill be found to increase 
as Vis observed at points closer and closer to the source of the wave. This is be­
cause the time at which v(t) reaches a particular angle in its cycle becomes pro­
gressively earlier at points closer and closer to the source. The rate at which</> 
changes with distance is the phase constant~. 

phase shift of 
traveling wave 
in line segment 
of length l 

+ toward } 
away from 

± ~l 

( 1.2-11) 

source of wave 

The terms electrical length and electrical distance are used in two really 
quite different senses. One meaning, which applies to a device or a component 
of a transmission system, is the length of air-dielectric line that has the same 
delay time as the device in question. Electrical lengths in this sense are measured 
in units of length : inches, centimeters, etc. The electrical length of a connector 
with a solid dielectric support bead, for example, will be longer than its physical 
length because the waves propagate more slowly in the solid dielectric than they 
do in air. 

Example: What is the electrical length, in the sense just defined, of a foot 
of cable whose dielectric is solid polyethylene (Er = 2.25)? 

From equation 1.2-5 we see that 

electrical length = ZJ"E; ( 1.2-12) 

where l is the physical length, so that a foot of the cable in question has 
an electrical length of 1 foot X J 2.25 = 1.5 feet. 

The second and more common use of "electrical length" or "electrical 
distance" is to refer to the phase difference ~z between two points on a trans­
mission line. Thus one speaks of a section of line that is rr/4 radian or 45 degrees 
in electrical "length." 

Example: A simple way to measure the velocity v of propagation in a 
cable (at moderate frequencies) is to short both ends of a length of the 
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cable and then to measure two or more resonant frequencies of the 
shorted line with a wavemeter or loosely coupled generator and indica­
tor. Resonance will occur when 2 {31, the electrical round-trip "distance" 
(that is, phase shift) down the shorted cable and back again, is a multiple 
of 360 degrees. Thus the resonant frequenciesfres will be given by 

j; v ( =n • n-res 2f - 1 , 2, ..• ) 

If !:::.fis the difference between two adjacent resonant frequencies, 

v =216.f ( 1.2-13) 

1.3 CHARACTERISTIC IMMITTANCEt 

The ratio of voltage V to current I in a traveling wave is a constant, a prop­
erty of the transmission line called the characteristic impedance, Zc. 

z - (V) (ohms) 
c - I traveling wave 

(1.3-1) 

Its reciprocal is called the characteristic admittance. 

y = -(I) c V traveling wave 
(ohms -I) (1.3-2) 

So that there is no misunderstanding, let us emphasize that we are talking about 
a traveling wave, not a standing wave. A standing-wave distribution of voltage 
and current is due to the superposition of two traveling waves moving in opposite 
directions, and the ratio of total voltage to total current in a standing wave is not 
constant at all but varies from point to point along the line. 

The voltage and current due to a traveling wave on an ideal lossless line are 
exactly in phase, a fact that we remarked upon in Section 1.1. Thus the charac­
teristic impedance and admittance of such an ideal line-and as a matter of fact 
for nearly all practical purposes the charncteristic impedance and admittance of 
actual lines as well-are real numbers. One might therefore have preferred to 
call them characteristic resistance and conductance. The characteristic imped-

tThe term "immittance'' means "impedance" and/or "admittance." 
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ance of a lossless coaxial line with perfectly smooth conducting surfaces is given 
by 

Z = _1_ fii{vac) 1 
1 c 21T ..j €(VaG) . Fe; oge a 

b 

b 
= (59.950 ohms) ~ loge 

v €T a 

1 b 
=(13~.03ohms) r-::- log10 -

" €r a 
(1.3-3) 

where Er is the relative permittivity of the dielectric, and a and b are the radii of 
the inner and outer conducting surfaces, as in Figure 1.1-2. 

Notice that the dimensions of the line enter into equation 1.3-3 only 
through the ratio b/a, so that the over-all size of the line has nothing to do with 
Zc. Fifty-ohm, rigid, air-dielectric coaxial line is manufactured in standard sizes 
from 7 millimeters to 9 inches in diameter. With a given outer conductor ID, the 
smaller the inner conductor, the higher the characteristic impedance. Type 
RG-8A/U and Type RG-11 A/U flexible cables, for example, both have a nominal 
diameter, measured inside the braided copper outer conductor, of 0.284 inch. 
The inner conductor of the Type 8A/U, which is a 50-ohm cable, consists of 
seven strands of 0.0206-inch copper wire, whereas that of the Type 11 A/U, a 
75-ohm cable, consists of seven strands of 0.0159-inch wire. 

The appearance of the factor 1/.f€; in (1.3-3) shows that the presence of 
dielectric material between the conductors lowers the characteristic impedance. 
The decrease in Zc is in the same ratio as the decrease in the velocity of propaga­
tion . 

Zc(solid dielectric)= velocity factor X Zc(air dielectric) (1.3-4) 

Equation 1.3-3 is derived under the assumption of an ideal, lossless line, 
whereas in fact losses and imperfections in the conducting surfaces do infll.\ence 
the characteristic impedance. At high frequencies these effects are very small in 
lines with solid, smooth conducting surfaces,t but they nevertheless can be signi­
ficant, for example in a precision air-dielectric line that is used as a standard of 
impedance. Although a quantitative discussion of conductor loss must wait until 
Chapter 4, this seems like an appropriate place to describe, in a physical way at 

t Although at low frequencies the influence of finite conductivity on transmission-line char· 
acteristic impedances is appreciable; telephone lines, for example, have characteristic im­
pedances with sizeable imaginary components at voice and carrier frequencies. 
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least, the effect that imperfect conductors have on the flow of current and the 
way in which they influence the line's characteristic impedance. 

Electromagnetic fields are rapidly attenuated in conducting media, and 
consequently they penetrate only very small distances into conductors. In a per­
fect conductor the field would not penetrate at all, and the current that forms 
the boundary of the field would flow in a surface layer of zero thickness. The 
attenuation of the field beneath the surface of a real conductor depends on the 
conductivity of the metal, the frequency, and the geometry of the surface; but 
at frequencies higher than a few kilohertz, the attenuation in a good conductor 
is very rapid and the current distribution below the surface can be treated as 
though it were a uniform layer of very small thickness 5 that is virtually indepen­
dent of surface geometry. In the case of a flat, perfectly smooth, non-ferromag­
netic metal surface, th~ distance 5, called the skin depth, is related to the 
frequency f (hertz) and conductivity a (ohm- 1 meter- 1

) by 

5 = 503 3 meters . J ( y,) 1 

· henrysY, fa 
(meters) 

"(d) 
(1.3-5) 

Notice that larger skin depths occur with lower frequencies and poorer conduc­
tivities. In copper plate, whose direct-current conductivity is approximately 
6 X 107 ohm- 1 meter-1

, ( 1.3-5) gives skin depths of about 

8 mm at 60H z 
0.7 mm at 10kHz 

0.02mm at 10MHz 
0.0007 mm at 10 GHz 

1-
[ 'J'o 

In a coaxial line with perfect conductors the currents would flow only in 
infinitely thin layers on the conducting surfaces and the field would stay in the 
dielectric space between the conductors. But when the conductivities are finite 
the current flow extends somewhat below the metal surfaces and the field pene­
trates a little into the metal. One effect of the field penetration is that the mag­
nitude of Zc is slightly higher than the value that ( 1.3-3) gives for an ideal line, 
somewhat as though the conductor separation had increased. Less easy to ex­
plain on simple physical grounds is the fact that conductor loss causes a slight 
phase lag of the electric field behind the magnetic field. This gives rise to a small 

negative imaginary (capacitive) component in Zc. If the conductor surfaces are 
compact and smooth by comparison with dimensions on the order of the skin 
depth, the real and negative imaginary components of the increment in Zc are 
equal. 

An idea of the size of the effect we are talking about can be gained from 
Figure 1.3-1, which shows the increment in Zc due to conductor loss as a tunc-
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Figure 1.3-1. The effect of conductor 

00 

loss on the characteristic impedance of 
General Radio 9/16-inch precision 50-
ohm silver air-dielectric line. The incre­
ment in Zc is complex; the real and 
negative imaginary components of /::,Zc 

are equal. (After Zorzy, loc. cit. Figure 1.2-1.) 
c. c. 

0 
f' IO OMHz IGHz 

frequency 
IOGHz 
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tion of frequency for General Radio 9/16-inch precision 50-ohm silver air-dielec­
tric line. 

1.4 ATTENUATION 

Losses and gains, when unqualified by the words "voltage" or "current," 
are comparisons in amounts of power. What we call a loss and what we call a 
gain is just a matter of which way around we want to express the comparison. 

loss ratio, P2 re P1 ( 1.4-1) 

gain ratio, P2 re P1 (1.4-2) 

If for example P1 and P2 are the powers at the input and output, respectively, of 
an attenuator, so that P1 > P2 , the loss ratio is greater than unity and the gain 
ratio is less than unity. 

Losses and gains are usually measured by the logarithms of the loss and 
gain ratios, rather than by these ratios themselves. The neper is a unit of loss and 
gain based on the natural, or Napierian, logarithm, and the decibel is a unit based 
on the common, or Briggsian, logarithm. 

1 P, 
loss (nepers), P2 re P1 = 2 loge p

2 

P, 
loss (dB),P2 reP1 = 10 log10 p2 

(1.4-3) 

( 1.4-4) 

Since log (1/x) =-log x, a gain in nepers or decibels is the negative of the corre­
sponding loss, and vice versa. We can convert nepers and decibels by noting that 
log10x = 0.43429 loge x, so that 
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and 
loss or gain {dB) = 8.686 X loss or gain {nepers) } 

loss or gain {nepers) = 0.1151 X loss or gain {dB) 

{1.4-5) 

The neper is a unit 8.686 times larger than the decibel. Because of the natural 
occurrence of powers of e and Napierian logarithms in transmission theory, 
nepers are usually used in theoretical work, while the decibel is the practical and 
laboratory unit. t Nepers thus bear somewhat the same relation to decibels that 
radians bear to degrees. 

Example: What is the number of decibels corresponding to a power ratio 
of 0.9987? 

Ratios that are very close to unity are usually most convenient to 
deal with when they are expressed as unity plus or minus a very small 
number. Thus 0.9987 = 1 - 0.0013. When a ratio is expressed in the 
form 1 ± x, the corresponding number of decibels is equal to ±4.343 x, 
provided x is small. 

number of decibels 
='= ± 4.343x 

in ratio 1 ± x 
{ 1.4-6) 

Thus the ratio 0.9987 is equivalent to -4.343 X 0.0013 = -0.0056 dB. 

We can calculate the ratio of two powers from the corresponding voltage 
or current ratios provided we also take into account the immittances. Expressed 
as a function of voltage, the power dissipated in an immittance is y,clvl2

, where 
G is the real {conductive) part of the admittance Y. In terms of current, power 
is equal to %R lrl2 , where R is the real {resistive) part of the impedance Z. Thus 

{1.4-7) 

and the number of nepers or decibels in the power ratio PdP2 is given in terms 
of voltage and current ratios by the formulas 

{
nepers } 

number of decibels 

in power ratio P1 /P2 

{ 1.4-8) 

t Although the naper is used as a practical unit in the German telephone industry. 
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One can often ignore the second terms in these formulas, for if G1 = G2 , the 
conductance term disappears from the first expression on the right of ( 1.4-8), 
and if R 1 = R 2 the resistance term disappears from the second expression. 

{
nepers } 

number of decibels ( 1.4-9) 

in power ratio P1 /P2 

(1.4-10) 

Textbooks often state as the condition for the validity of ( 1.4-9) and ( 1.4-1 0) 
that the impedances must be equal. This is incorrect. If what is meant is that 
Z 1 = Z 2 , we can see that it is not necessary. If lz1 1 = lz2 1 is meant, it is clearly 
neither necessary nor sufficient. 

The decibel is also used to express voltage and e>urrent ratios without re­
gard for the amounts of power involved. Thus 

number of decibels 
in voltage ratio V 1 /V2 

(1.4-11) 

and likewise for currents. Standing-wave ratios, for example, are commonly ex­
pressed in decibels. 

Attenuation, applied to a transmission line, means the decrease in traveling­
wave power in the direction of the wave's propagation. If a section of line has an 
attenuation expressed in decibels of A(dB), or in nepers of A(nep), the ratio of 
traveling-wave power leaving to traveling-wave power entering the section, which 
has to be a number less than unity, is 

traveling-wave 
power leaving 
traveling-wave 
power entering 

-~A(dB) 
10 10 -2A(nep) 

e ( 1.4-12) 

The corresponding voltage or current ratio is equal to the square root of the 
power ratio: 

traveling-wave 
V (or I) leaving 
traveling-wave 
V (or I) entering 

_ _!_A(dB) 

10 20 
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-A(nep) 
e (1.4-13) 



--

The attenuation constant or attenuation factor, a, is the attenuation per 
unit length of line. Thus a length I( meters) of line has an attenuation of A(dB) = 
a(dB/m)l or A(nep) = a(nep/m)l. In practice one often finds the attenuation of 
lines and cables given in decibels per foot or per 100 feet or per mile. 

Two kinds of loss are responsible for the attenuation in coaxial lines: loss 
due to the finite conductivity of conductors and loss due to dielectric relaxa­
tion- friction experienced by the alternating polarization in the dielectric. 

Conductor loss depends of course on the metal from which the conductors 
are made or with which they are plated, but it also depends on the frequency, 
because of the frequency-dependent skin depth. The part of the attenuation 
constant due to conductor loss, <Xcand• in an otherwise ideal coaxial line is given 

::ooO - Yo J"ftJ! JT ( aJ ~)a) + bJ ~)b)) ~~:' 11.4-14) 

where Yc is the characteristic admittance, a and b are the radii of the inner and 
outer conducting surfaces, and a(a) and a(b) are the conductivities of the inner 
and outer conductors. The formula shows that <Xcand increases with the square 
root of the frequency. The first and second terms within the parentheses in 

( 1.4-14) are associated respectively with the inner and outer conductors, and, as 
one would expect, the first term is likely to be the larger. Notice that small lines 
have higher conductor loss than larger lines with the same Yc. 

Equation 1.4-14 accurately describes the conductor loss in a real coaxial 
line if suitable values are used for the conductivities a(a) and a(b). Such values 
are sometimes considerably lower than the de conductivities of the conductor 
metals, an effect that is presumably due to the condition of the surface, since the 
effective conductivity of a rough or porous surface is found to be lower than that 
of a smooth, compact one and, furthermore, is found to decrease with rising fre­
quency and concomitantly decreasing skin depth. A few examples are given in 
Table 1.4-1. 

The attenuation constant of General Radio 9/16-inch 5Q-ohm precision 
silver air-dielectric line is shown as a function of frequency in Figure 1.4-1. The 
attenuation in air-dielectric lines is due entirely to conductor loss. 

~ Jo -•r---~r---~r---~~~~ 

t 
g 10 - 3 

Figure 1.4-1. The attenuation constant 
of General Radio 9/16-inch 50-ohm pre­

cision silver air-dielectric line. 
'tlu 

1 o-• l__ __ ___JL_ __ ___JL_ __ ___j ____ ___j 

IMHz IOMHz IOOMHz 

frequency 
iGHz IOGHz 

COAX-HB -35 

(After Zorzy, loc. cit. Figure 1.2-1.) 
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TABLE 1.4-1 

Surface Frequency 

copper plate .... · · · · · · · · · · · · · · · · · · · de 
2.5 GHz 

Conductivity 

5.9 X 107 ohm- 1 m- 1 

2 

polished brass· · · · · · · · · · · · · · · · · · · · · · de 1.3 
2.5 GHz 1.3 
8.5 GHz 1.3 

silver plate 

de plated · · · · · · · · · · · · · · · · · · · · · · · 

de plated with a 

de 
2.5 GHz 

6.1 
5.3 

8.5 GHz 3.1 

commercial brightener············ 2.5GHz 1.0 
8.5GHz 0.8 

plated with periodically 

reversed current · · · · · · · · · · · · · · ·.. 2.5 GHz 6.0 
8.5GHz 6.0 

Let us turn to dielectric loss. In an ideal capacitor the dielectric displace­
ment current leads the voltage, and therefore the electric field, by exactly 90 
degrees and no power is dissipated. If, on the other hand, the dielectric is lossy, 
displacement current leads the electric field by less than 90 degrees. This is 
shown in the phasor diagram of Figure 1.4-2, in which the Joss angle o by which 
the phase difference falls short of 90 degrees is enormously larger than it would 

"E 
Q) ... ... 
:::J 
0 

Q) 

> 
0 
0 
Q) ... 

loss current 

electric field 
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Figure 1.4-2. Phasor diagram of reactive 
and loss components of dielectric dis­
placement current. The loss component 
is enormously exaggerated. 
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be in any practical dielectric. t The out-of-phase component of current, or reac­
tive current, dissipates no power; it is associated with energy stored in the dielec­

tric. The in-phase component, or loss current, is associated with dissipation due 
to dielectric relaxation, a friction-like drag on the dielectric's alternating polari­
zation. 

The size of the loss current relative to the reactive current is a measure of 

the lossiness of the dielectric. Various numbers are used to express this compari­

son. One of them is the loss angle li, defined in Figure 1.4-2; here are several 

others: 

__ tan ., __ loss_ current dissipation factor (D) or loss tangent u 
react1ve current 

loss factor 

dielectric Q = 
loss tangent 

cot li 

. . loss current 
d1electnc power factor= --,--

1 
-:-d:-. -,--

1 

-----­
tota 1sp acement current 

sinD 

(1.4-15) 

(1.4-16) 

(1.4-17) 

(1.4-18) 

In a good dielectric the loss current is very small and the total displacement cur­
rent is practically equal to its reactive component. In this case the power factor 
and loss tangent are virtually equal. 

In theoretical work, use is often made of a complex permittivity, € = 
e'- je ·: The real part e' is the ordinary permittivity and accounts for the reac­
tive component of displacement current. The imaginary parte" accounts for the 
loss current; it is a positive number that is very much smaller than e' in a good 
dielectric. The loss angleD is minus the angle of the complex number E: 

II 

tan D = € 
€' 

There is also a complex relative permittivity, Er, defined by 

(1.4-19) 

(1.4-20) 

tThe dissipation factor, tan 6, of Teflon at 3 GHz and 22 degrees centigrade is 0.00015, 
and of polyethylene, 0.00031. 
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The real and imaginary parts of Er are just the corresponding parts of E; divided 
by e(vac). The loss factor is minus the imaginary part of the complex relative 
permittivity : 

loss factor = e;' (1.4-21) 

The attenuation in a coaxial line due to dielectric loss is 

adiel = 1T V-r.~:M (diel) f tan o ( nepers/ meter) (1.4-22) 

When we compare this formula with ( 1.4-14) for the conductor loss we notice 
two differences. First, adiel does not depend at all on the dimensions of the line. 
Second, adiel increases proportionally with frequency rather than with the square 
root of frequency, as acond does. At frequencies below 10 GHz, losses are due 
mostly to the conductors rather than the dielectric, even in solid dielectric cables. 

1.5 DISTRIBUTED CIRCUIT MODEL 

Transmission lines are very often represented by the immensely useful dis­
tributed circuit model, which is capable of describing the propagation not only 
of TEM waves but also, with appropriate definitions of current and voltage, 
of dominant-mode waves in hollow waveguides. 

Figure 1.5-1 shows symbolically an elementary length & of line with its 
associated inductance 1&, capacitance cl::::,x, resistance r& and conductance 
g&. The model is justified in the following way. The magnetic field between 
the line's conductors links the circuit formed by generator, line, and termination, 
and hence is represented by series inductance per unit length of line. The elec­
tric field fills the dielectric space between the conductors and thus gives rise in 
the model to parallel capacitance per unit length. Conductor loss is accounted 
for by adding resistance in series with inductance, and dielectric loss by shunting 
the capacitance with conductance. We will write these parameters with lower-

Figure 1.5-1. Distributed parameters of 
an elementary length of transmission 
line. 

l AX r AX 

C AX;::..., {/AX 

t-----AX---------~ 
COAX-HB·5 
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case letters as a reminder that each is a quantity per unit length of line. Thus 1, 
c, r, and g are respectively the series inductance (henrys/meter), shunt capaci­
tance (farads/meter), series resistance (ohms/meter), and shunt conductance 
(ohms- 1 /meter). Perhaps we should emphasize that these parameters are linearly 
distributed, not lumped into coils, capacitors, etc that are periodically disposed 
along the line, as Figure 1.5-1 might misleadingly imply. Any length 6x of line, 
no matter how short, contains series inductance equal to 1&, shunt capacitance 
equal to c& and so forth. 

The inductance per unit length of a lossless coaxial line is 

1 = J.!(vac) log !!._ 
21T e a 

(henrys/meter) 

and the capacitance per u11it length is 

c 
€r 

21T e(vac)--b-
loge­

a 

(farads/meter) 

(1.5-1) 

(1.5-2) 

Both these parameters are independent of frequency, except insofar as €r may be 
a function of frequency. If losses and non-ideal conducting surfaces are taken 
account of, one obtains expressions for the dissipative parameters r and g and 
also for an additional component of l. These quantities are all frequency-depend­
ent. (We shall discuss the theory of the distributed-circuit model in detail in 

Chapter 4.) 
In the zero-loss approximation the characteristic impedance is given in 

terms of the distributed parameters by 

z = rr 
c v-; (ohms) 

and the velocity of propagation by 

v = 1/JTC (meters/second) 

( 1.5-3) 

( 1.5-4) 

Example: What is the capacitance per foot of a 50-ohm cable with solid 

polyethylene (e, = 2.25) dielectric? 
From (1.5-3) and (1.5-4) we have 

c 
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The velocity is given by ( 1.2-5): 

v = v(vac) = (3 X 1 Q8 m/s)/J 2.25 = 2 X 108 m/s. 
re; 

Thus 

1 
c=---=---

2 X 108 m/s 50 ohms 
1 o-10 farad/meter 

100 pF/meter 100 pF/3.28 feet 30.5 pF/foot. 

Example: RG-71A/U is a low-capacitance cable with a dielectric of air­
spaced polyethylene which gives a velocity factor of 0.84. The capaci­
tance is 13.5 pF/foot. What is the characteristic impedance? 

z = .!_ 
c v c 

The capacitance per meter is 13.5 pF/0.305 meter = 44.5 pF/meter. 
Therefore 

z = 1 
c 0.84 X 3 X 108 m/s 44.5 X 10 12 F/m 

89 ohms. 

1.6 HIGHER MODES 

We said in Section 1.1 that there are, in addition to the principal or TEM 
mode, infinitely many higher modes (or waveguide modes) that can propagate on 
a coaxial line at sufficiently high frequencies. Let us recapitulate the ways in 
which TEM and higher-mode waves differ. 1) Both the electric and magnetic 
fields of TEM waves are perpendicular to the direction of propagation. Higher­
mode waves also have a field component in the direction of propagation. 2) A 
transmission line that is to transmit TEM waves must have two or more conduc­
tors (the cross section of its conducting surfaces must be a multiply-connected 
curve). Higher-mode waves can propagate on any kind of transmission line, in­
cluding single-conductor (simply connected) structures such as hollow wave­
guides. 3) TEM waves may have any frequency; higher-mode waves can propa­
gate only above certain cutoff frequencies that depend on the particular mode 
and the cross section of the transmission line. 4) The velocity of TEM waves is 
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independent of frequency, while velocities of waves belonging to the higher 
modes are frequency-dependent. 

The importance of higher modes in coaxial lines is that the onset of wave­
guide propagation sets an upper limit to the coaxial line's normal useful frequen­
cy range. This is so because there is no practical way to prevent the higher modes 
from interfering with propagation in the principal mode, since any discontinuity 
in the coaxial systems is likely to couple the TEM fields with those of higher 
modes. 

The coaxial waveguide mode with the lowest cutoff frequency is the H11 
(or TE 11 ) mode, whose ffelds are shown in Figure 1.6-1. The cutoff frequency 
of the H11 mode is given approximately by 

!cutoff -'-
VTEM 

1T(a +b) 
( 1.6-1) 

where vTEM is the velocity of TEM waves in the medium that fills the space be­
tween the conductors. One can see from ( 1.6-1) that fcutoff is the frequency at 
which the mean circumference of the conductors is approximately equal to a 
wavelength. If we take as an example standard 9/16-inch 50-ohm air-dielectric 
line (a= 0.122 inch, b = 0.281 inch), equation 1.6-1 gives a cutoff frequency of 
about 9.4 GHz. If this same line is now filled with polystyrene, whose dielectric 
constant is approximately 2.5, the cutoff frequency is reduced by a factor of 
1/f2.5to about 6 GHz. 

The phase velocityt of non-TEM waves is higher than that of TEM waves; 
it is infinite at the cutoff frequency and approaches the TEM velocity as the fre­
quency gets highertt. 

Vhigher mode 

j -~7")' (1.6-2) 

tphase velocity is the velocity of propagation of any given point of an infinitely long sinus­
oidal traveling wave. When phase velocity is constant with frequency (as it is in the case of 
TEM waves) sinusoidal waves, pulses, and modulation envelopes all travel at the same speed 
and there is no ambiguity when the term "velocity" is used without qualification, But when 
phase velocity changes with frequency, as it does in the case of higher-mode waves, pulses 
and modulation envelopes travel more slowly than sine waves and become distorted, There 
is then said to be "dispersion" and one must distinguish between phase velocity and the 
velocity of, say, the center of a pulse, 

tt1n case the reader thinks this statement conflicts with relativity theory: it doesn't, 

1.6 HIGHER MODES 23 



24 1.6 HIGHER MODES 

IIi 
"C 
0 
E 

Cii 
")( 
111 
0 
(.) --::I: 
QJ 

..c:: ... -0 

"' "C 
]! 
u. 



Below its cutoff frequency a waveguide mode is nonpropagating. The 
phase constant is zero (there is no change in phase from one place to another) 
and the fields are rapidly attenuated, the more so the lower the frequency. 

{higher mode) 
a \below cutoff 

27Tfcutoff 

VTEM 
(1.6-3) 

This is nGt an attenuation due to dissipation, like the attenuation of the TEM 
mode that we discussed in Section 1.4, but due to reflection from a waveguide 
that is too small to allow the wave to propagate. Below cutoff, too, the electric 
and magnetic fields are in phase quadrature-the characteristic impedance is re­
active. In the propagating region above cutoff the fields are in phase, as they are 
in the TEM mode. 

As an illustration of the kind of difficulty that waveguide modes may 
cause, we cite the H11 -mode resonance of a dielectric support bead in an air­
dielectric line. If we consider the section containing the bead as a length of solid­
dielectric line, then, as we saw above, the H11 -mode cutoff frequency will be 
considerably lower in this section than in the rest of the line where the dielectric 
is air. One might not expect to observe any effect due to H11 -mode propagation 
in the bead because, at frequencies that are below H11 cutoff in the empty line, 
the bead is very short compared with the H11 wavelength in the bead. But this 
argument ignores the fact that the bead is terminated on both sides by lengths of 
air-filled line, which present inductive reactances to the H11 waves in the bead at 
frequencies below H11 cutoff in the empty line. Thus, in the frequency range 
above H11 cutoff in the bead but still below cutoff in the air-filled line, it is pos­
sible for resonance to occur in the short section of solid-dielectric line with its 
two inductive terminations. Such resonances have been observedt as narrow 
peaks in the insertion loss of the bead. 

t J. F. Gilmore, "TE 11 -Mode Resonance In Precision Coaxial Connectors," General Radio 
Experimenter, August 1966. 
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Standing Waves 

In the preceding sections we have been talking about sinusoidal traveling 
TEM waves in coaxial transmission lines, and we have introduced the parameters 
that describe their propagation : the velocity v (or the phase constant (3), the 
characteristic impedance Zc, and the attenuation constant a. t 

A pure traveling wave can exist only on a section of line that is terminated 
at the receiving, or load, end by a device that reflects no energy back toward the 
generator. Since in practice there are no perfectly reflectionless terminations, 
there are always two traveling waves at any point on a transmission line, a for­
ward (or incident) wave propagating from the generator toward the load and a 
reflected wave propagating back toward the generator. It is the interference of 
the forward and reflected waves-constructive here, destructive a quarter wave­
length away-that produces the distribution of fields along the I ine that is called 
a standing wave. 

1.7 THE REFLECTED WAVE 

Any discontinuity in the uniform construction of the transmission line 
generates reflections. Thus, not only the terminating load but also connectors, 
junctions, bends, probes, holes, transitions, tuning screws, support beads, and so 
on are all sources of reflected waves. In Chapter 3 we shall have something to 
say about the reflections contributed by individual discontinuities, but for the 
present we shall consider the simple situation, depicted in Figure 1.7-1, in which 
a unifor"m line is terminated in a load which is the only source of reflections. 

Before going on to talk about the generation of a reflected wave, we must 
stop for a moment and discuss the lumped impedance that we show at the end 
of the I ine in Figure 1. 7-1. Of course this is just a convenient fiction that we use 
to represent the actual state of affairs at the end of the line. One might think 
that this goes without saying, since one is so used to seeing a one-port device rep­
resented at low frequencies by a lumped impedance equal to the impedance that 
the device presents at its terminals. A transistor is shown schematically with a 

t Let us point out here that, although the primary concern of this book is coaxial lines, 
nearly everything we shall have to say in the rest of the book is applicable to all kinds of 
transmission lines whether they work in the TEM mode or not. The reason is that non-TEM 
as well as TEM waves are described by an appropriately defined "voltage" that is propor­
tional to the electric field, a "current" that is proportional to the magnetic field, a character­
istic Impedance Zc, a phase constant (3, and an attenuation constant cr. Thus the reader who 
is also Interested in waveguides will find the material In the remainder of this chapter and in 
succeeding chapters relevant. 
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zig-zag line in its collector circuit marked "load," although the load actually 
might be a loudspeaker. So far as the transistor is concerned, all that matters is 
the ratio of vo ltage to current at the load terminals, and the effects of the loud­
speaker and the acoustical circuit of the cabinet and its environment are of no 
interest except insofar as they affect this ratio. 

But at microwave frequencies the situation is not quite so simple. We may 
still represent a one-port device with a lumped impedance equal to the ratio of 
voltage to current at its terminals provided terminals are chosen at which it is 
possible to define a voltage and a current. But surely there is no problem in 
talking about voltage and current anywhere we please! This is a prejudice one 

acquires as a result of a low-frequency upbringing, and it is not true. In micro­
wave circuits the concepts of voltage and current are meaningful only in a trans­
mission line and only when a single mode is propagating. For this reason two 
strict conditions must be met before we can talk about the impedance of a micro­
wave one-port. First, the device must have a piece of transmission line sticking 
out of it. Second, somewhere in this transmission line, far enough from the 

physical termination that the TEM fields are not distorted, a transverse reference 

plane or terminal plane t must be established. The plane t defines the device's 
port or "terminals," and the ratio of voltage to current at t is what we shall mean 
by the device's impedance. The value of the impedance will, as we shall see in 
the next section, depend on the location that is chosen for the terminal plane. 

In practice, the piece of transmission line may be provided by the device's 
connector. The terminal plane might then be specified at the outer surface of a 
bead supporting the connector's inner conductor. Alternatively, in a connector 
that makes a butt contact, a mating contact surface can provide the reference 
plane. However the terminal plane may be defined, it is important for the reader 
to realize that the impedance of a microwave one-port is a meaningless number 

forward wave 

~ 

... 
__ g_t~_n_e_r_a_to_r ____________ ___,f termination 

~ 
reflected wave COAX-HB·B 

Figure 1. 7-1. Forward and reflected waves on a terminated line. 

1.7 THE REFLECTED WAVE 27 



==-==:::::::to:}:::::i-:::::~-
1 I 
I I 
I I 

l l 
', I 

one- port 
device 

', I 
'................ 1--terminal plane, t, defines 

'.....J device's "termina Is" 

I 
t 

lumped impedance is a convenient 
fiction used to represent the 
physical termination 

COAX-HB-21 

Figure 1. 7-2. The presence of the physical termination is accounted for by 
means of a hypothetical lumped immittance at the terminal plane. 

unless it is accompanied by the specification of the terminal plane. Bearing in 
mind then what is actually involved when we pretend that the line ends in a 
lumped impedance, let us return to our discussion of the reflected wave. 

We saw in Section 1.3 that the ratio of voltage to current in a traveling 
wave is always equal to the characteristic impedance of the line. We will label 
quantities belonging to the forward wave with superscript suffixes+, so that we 
have 

(1.7-1) 
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But at the same time, the total voltage and total current in the termination, 
which we will label with subscript .suffixes t, have to satisfy 

vt 
- = z I t t 

( 1. 7-2) 

where Zt is the terminating impedance. Suppose for a moment that the forward 
wave is tha only wave on the I ine. Since voltage and current have to be continu­
ous across the ~~rminal plane, we would then have 

v = v+} 
I,t =I+ (only a forward wave on the line) (1.7-3) 

\ 
COAX-HB-3 

Figure 1.7-3. If the inc1aem wave is the only wave on the line, continuity of 
voltage and current at the terminal plane requires that v• = Vt, I+= It. This is 
not possible unless Zt = Zc. 

But equation 1. 7-3 is obviously not consistent with ( 1.7-1) and ( 1. 7-2) except in 

the special circumstance that the terminating impedance is equal to the charac­
teristic impedance. When Zt -=1= Zc, the presence of a reflected wave on the line 
makes up the discrepancy between the forward 'Voltage and current and the volt­
age and current in the termination. 

We will label the voltage and current belonging to the reflected wave with 
superscript suffixes -, thus: v·, I-. If we continue to use the same reference 
directions for voltage and current that we chose for v+ and I+, the reference 
directions indicated in Figures 1.7-3 and 1.7-4, v- and r will satisfy 
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(1.7-4) 

This is the same equation as ( 1. 7-1) except for the minus sign in front of Zc, 
which arises because v- and I- belong to a wave that travels away from the termi­
nation rather than toward it. 

The total voltage and total current on the line are the sums of the forward 
and reflected voltages and forward and reflected currents: 

V=V+ + V­

I=!++ [ 

( 1.7-5) 

( 1.7-6) 

Continuity of voltage and current across the terminal plane requires that the 
total voltage and total current in the line at t equal respectively the voltage and 
current in the termination: 

(1.7-7) 

(1.7-8) 

If we combine equations 1.7-7 and 1.7-8 with 1.7-1, 1.7-2, and 1.7-4, we can ob­
tain a formula that tells the magnitude and phase of the reflected wave that is· 
generated when a known forward wave is incident upon a known terminating 
impedance: 

Figure 1. 7-4. When Zt =F Zc, there is a 
reflected wave on the line and the total 
voltage and total current on the line are 
equal respectively to the voltage and cur­
rent in the termination. 
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zt 
-1 

v- {at t) = 
zc 

V+(at t) { 1.7-9) 
zt 

zc 
+1 

Example: We have seen that if the terminating impedance equals the 
characteristic impedance of the line, a forward wave alone satisfies the 
requirements of voltage and current continuity at the terminal plane. 
When Zt = Zc, {1.7-9) gives V- = 0. A terminating impedance that equals 
the characteristic impedance is called a reflection less termination. t 

Example: If the termination is a short (Zt = 0), we know that the total 
voltage at the terminal plane has to be zero; consequently, the forward 
and reflected voltages must cancel there. If we substitute Zt = 0 into 
{ 1. 7-9) we get v- =-V+. that is, the forward wave is completely reflected 
with a reversal in its phase. 

Example: If the termination is an open {Zt =oo). {1.7-9) gives V-= V+, 

which is interpreted as complete reflection with no phase reversal. Ar­
guing on physical grounds, we would say that an open circuit means zero 
current, which implies that the forward and reflected currents cancel. 
Reference to equations 1.7-1 and 1.7-4 shows that if I-= -I+, then 
v- = v+. 

Example: Consideration of energy tells us in the case of the two fore­
going examples that the magnitudes of the forward and reflected voltages 
must be equal, since shorts and opens absorb no power. But neither do 
reactances absorb power. If Zt = jXt, one can show quite easily that 

so that { 1. 7-9) gives lv+l lv-1. 

tOr very often a "matched" termination. However, we shall avoid the term 

"matched" because it is used with several different meanings. 
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We will now introduce several quantities that are used to express the mag­
nitude and phase or just the magnitude of the reflection. The ratio of the re­
flected to the incident voltages is called the reflection coefficient. We shall 
represent it with a r, although p is often used. 

(1.7-10) 

Equation 1. 7-9 gives the reflection coefficient at the termmation: 

r (at t) (1.7-11) 

(We shall have a good deal more to say about this extremely important formula 
in the next section and in Chapter 2.) Reflection coefficients, like immittances, 
are ratios of phasors and are consequently complex quantities. We shall use 0 for 
the angle of r. 

r = lr14o (1.7-12) 

0 is the angle by which the reflected voltage leads the incident voltage. The mag­
nitude of r can have values from zero, which corresponds to a reflectionless 
termination, to unity, which corresponds to a totally reflecting termination, that 
is, an open, a short, or a pure reactance. The relation between the reflection 
coefficient and the forward and reflected currents is 

(1.7-13) 

as one can see by comparing ( 1. 7-1 0) with ( 1. 7-1) and ( 1. 7-4). 

We shall give a proper definition of standing-wave ratio (SWR) in Section 
1.9, but for completeness we must mention it here since it is one of the com­
monest ways of describing the magnitude of the· reflection. The standing-wave 
ratio r (S and a are also used) is related to the magnitude lrl of the reflection 
coefficient by 

r = 1 + 1r1 
1- 1r1 1r1 

r- 1 
r + 1 
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Since, as we shall see in Section 1.9, the standing-wave ratio is a voltage ratio, it 
is expressed in decibels by 

r(dB) = 20 log10 r (1.7-15) 

One can show that r(dB) and lrl are related by 

r(dB) = 8.686 X 2 tanh- 1 lrl (1.7-16) 

where tanh-1 is the inverse hyperbolic tangent. The standing-wave ratio can 
have values from unity (0 dB) for a reflection less termination to infinity (oo dB) 
for a totally reflecting one. 

Return loss, which we shall designate with an R, compares the power in the 
reflected wave with that in the forward wave. It is the number of decibels be­
tween the amount of power in the forward wave and the amount of power in the 
reflected wave. 

R(dB) = 10 10 incident power 
10 1 lv+l2 

2 
1 

g10 reflected power = og10 lv-:12 = 0 log10 TrT (1.7-17) 

If the termination is totally reflecting the return loss is zero; a reflectionless 
termination has infinite return loss. The return loss and standing-wave ratio are 
related by 

(
1 R(dB)) 

r = ctnh 2 8.686 

where ctnh means the hyperbolic cotangent. 

(1.7-18) 

Reflection loss refers to the loss, due to reflection, in power absorbed by 
the load:t 

reflection loss (dB) 10 log10 power absorbed by termination 
incident power 

10 log 10 
1- lrl 2 

(1.7-19) 

Zero reflection loss occurs when the load is nonreflecting. 

tThe term "transmission loss" has been used for this quantity, but our term "reflection loss" 
is more usual. So many different things have been named "transmission loss" that we shall 
steer entirely clear of the term. 
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A graphical comparison of the four quantities-reflection coefficient, 
standing-wave ratio, return loss, and reflection loss-that describe the magnitude 
of a reflection is presented in Figure 1. 7-5. The reader may be surprised to note 
that a reflection coefficient as high as 0.45 results in a reflection loss of only 1 dB. 

A special case of considerable practical interest is that in which the reflec­
tion is very small. The following approximations can often be used when the 
standing-wave ratio is less than about 1.1. 

SWR return reflection 
IFI r r(dB) loss, R loss 

1.0 co co 0 co 
40. 

40. 30. 10. 

0.9 20. 
1.0 

10. 20. 5.0 
Q8 2.0 

4.0 

0.7 15. 3.0 3.0 

5.0 

4.0 
0.6 4.0 

2 .0 

5.0 

10. 
0.5 3.0 6.0 

7.0 1.0 
8.0 

0.4 8.0 

9.0 
2.0 6.0 0 .5 

0.3 
10. 

1.8 

12 . 
1.6 4 .0 

0.2 14 

.4 0.1 

0.1 
2.0 

1.2 20. 

30. 

0 1.0 0 co 0 
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Figure 1. 7·5. Graphical comparison of the magnitude lrl of the reflection coef· 
ficient, the standing-wave ratio, the return loss, and the reflection loss. 
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1 lrl=- (r-1) 
2 

,. = 1 + 2 lrl 

r(dB) = 8.686 (r -1) 

r = 1 + 0. 11 51 X r( dB) 

1 
R(dB) = -20 log10 2 (r -1) 

_ _.l R(dB) 

r= 1+2X10 20 

1 
ref. loss(dB) = 8.686 X 2 1rl2 

1 
ref. loss(dB) = 8.686 X B (r -1 )2 

1 -...!...R(dB) 
ref. loss(dB) = 8.686 X :z-10 10 

(1.7-20) 

(1.7-21) 

(1.7-22) 

(1.7-23) 

(1.7-24) 

(1.7-25) 

(1.7-26) 

(1.7-27) 

(1.7-28) 

R(dB) = -10 log 10 [ref. loss (dB)] - 6.378 (1.7-29) 

1.8 IMMITTANCE AND REFLECTION COEFFICIENT 

Although we have talked about immittances and reflection coefficients 
only in connection with the line's termination, it should be clear from the arbi­
trariness of the way in which the terminal plane is defined that these quantities 
are equally meaningful at any other reference plane anywhere on the line. 

Let us assume that a terminal plane t has already been agreed upon. We 
will specify the location of any other reference plane by giving its (physical) dis­

tance w from t toward the generator. The total voltage and total current at w 

-to \+ + _ 
generator V(w) = V (w) + V (w) 

J 
~------- w--------~ 

COAX-HB-2'2 I 

Figure 1.8-1. Total voltage V(w), total 
current I(w), forward and reflected volt­
ages v·(w) and v-(w), and forward and 

reflected currents l(w) and [(w) at a 
reference plane located a distance w 
from the terminal plane. 
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will be written V(w) and I(w). and the forward and reflected voltages and cur­
rents at w will be written v•(w), V-(w),I+(w). and nw). The impedance Z(w) 

that we see at the plane w when we look toward the load is defined as the ratio 
of total voltage to total current at w : 

Z( )= V(w) 
w I(w) 

( 1.8-1) 

Similarly, the reflection coefficient r(w) that we see at the plane w when we 
look toward the load is the ratio of the reflected voltage to the forward voltage 
at w: 

(1.8-2) 

Mathematically, Z(w) and r(w) each conveys exactly the same information. 
If we know one of them we can calculate the other. Equation 1.7-11, which 
gives the terminating reflection coefficient as a function of the terminating im­
pedance, is obviously quite general, and we now rewrite it so as to show that it is 
valid at any reference plane w . 

Z(w) _
1 

r Zc 
(w) = Z(w) 

+1 
Zc 

The companion formula for Z(w) as a function of r(w) is 

Z(w) _ 1 + r(w) 
T - 1- r(w) 

(1.8-3) 

(1.8-4) 

Because of the utility of both the impedance and reflection-coefficient concepts, 
the transformation expressed in ( 1.8-3 and -4) figures prominently in microwave 
theory. 

Example: What is the reflection coefficient at a reference plane of a 50-
ohm line where the impedance is 25 + j75 ohms? 

(25 + j75) ohms 

r = 50 ohms 
(25 + j75) ohms 

50 ohms 

-1 _(~+j~) -1 

+1 -(~+j~)+1 
2 

1 .3 
-- +J-

2 2 1 2 
=- +j-

3 .3 3 3 
2 +12 

4 tan- 1 +- = 0.745 4 63.5 deg 

3 
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Let us interrupt the discussion for a moment to introduce some labor­
saving notation. The reader has probably noticed that wherever impedances have 
occurred in our formulas they have been divided by the characteristic impedance 
of the line. As a matter of fact, whenever immittances turn up in transmission­
line formulas they are always divided by the corresponding characteristic immit­
tance, and we can tidy up such formulas by writing them in terms of normalized 
impedances and admittances, which we shall distinguish from the ordinary, or 
unnormal ized, quantities with bars: 

y ( 1.8-5) 

Notice that Z's and Y's are not impedances and admittances at all; they are di­
mensionless ratios. In terms of the normalized impedance, equations 1.8-3 and 
1.8-4 are 

f(w) = Z(w) -1 
Z(w) +1 

and 

Z(w) = 1 + f(w) 
1- f(w) 

(1.8-6) 

( 1.8-7) 

Example: An inductive impedance corresponds to a reflection coefficient 
that lies in the upper half of the complex plane, that is, to one whose 
angle 8 has a positive value between zero and 180 degrees. We can see 
why this is so by referring to Figure 1.8-2. If Z is inductive, its imaginary 

Figure 1.8-2. 
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part is positive and it lies in the first quadrant of the complex Z-plane. It 
is obvious from an inspection of the figure that, no matter where Z falls 
within the first quadrant, 1) the angle~- of the complex number Z- 1 
will always lie between 0 and 180 degrees, 2) the angle~+ of the number 
Z + 1 will always lie between 0 and 90 degrees, and 3) ~-will always be 
larger than~+· We conclude therefore that~-- ~+• which is equal to the 
angle e of the reflection coefficient r, must be between 0 and 180 
degrees. 

By assuming that Z has a negative imaginary part, so that it falls in 
the fourth quadrant, the reader will be able to show that capacitive im­
pedances correspond to reflection coefficients that lie in the lower half 
of the complex plane, that is, have negative angles between 0 and -180 
degrees. 

One of the moSt important properties of the reflection coefficient is the 
mathematically simple way in which it changes with position on the line. Sup­
pose we know the reflection coefficient at one reference plane, w 1 say, and wish 
to calculate it at another, w 2 • As we move from w 1 to w 2 we observe that 
the forward voltage V+ changes in magnitude by a factor eo:(nep/ml x (w2- w 1l. 

If w2 - w 1 is a positive quantity the magnitude increases, for we are moving to­
ward the generator; if w2 - w 1 is negative the magnitude decreases, for we are 
moving toward the load. Along with the change in its amp I itude, V+ experiences 
a phase change between w 1 and w 2 equal to ~(w2 - w 1 ), positive toward the gen­
erator, negative toward the load. 

We can express the change in V .. from w 1 to w2 both in amplitude and in 
phase by writing 

+ + .O!(nep/m) X (w2 - w1l "" R( ) V (w2) = V (w1) e <+ ,_. w 2 - w1 (1.8-8) 

The corresponding expression involving the reflected wave is the same except 
that the sign of w 2 - w 1 is reversed because the reflected wave is propagating in 
the opposite direction. 

-O!(nep/m) X (w2 -wl) 
e 

If we divide ( 1.8-9) by ( 1.8-8) we have 

r( ) _ r( ) -20!(nep/m) X (W2 -Wl) "" 2a( ) 
w2 - w1 e <+- ,_. w 2 -w1 
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which is the desired relation between the reflection coefficient at w 1 and that at 
w2. Note that the angle of r changes in the negative (clockwise) sense and the 
magnitude diminishes toward the generator. Also note the factor 2. The angle 
of r changes with position on the line twice as fast as the phase of a traveling 
wave, and the magnitude of r varies as the power, rather than the voltage, of a 
traveling wave. 

One can almost always neglect the attenuation of air-dielectric lines. To 
the extent that this approximation is valid, the magnitude of the reflection coef­
ficient is constant everywhere on the: line while the angle changes with distance 
at a rate 2{3, in ti-Je negative sense (clockwise) toward the generator. 

f(w2) = f(w 1 ) • 1 4-2~(w2 - w 1 ) (lossless line) ( 1.8-11) 

The standing-wave ratio and return loss, defined in the preceding section, 
may be used to express the magnitude of the reflection at any point on a trans­
mission line as well as at the termination. On a lossless line they are both con­
stant. On lossy lines the SWR gets smaller and the return loss larger as we get 
farther from the load. The return. loss is affected by the line's attenuation in a 
particularly simple way: as we move away from the load the return loss increases 
by just twice the added line attenuation. The relation is expressed by 

( 1.8-12) 

where the R's are in decibels if a is in decibels/meter and in nepers if a is in 
nepers/meter. The corresponding formula in terms of standing-wave ratios is 
considerably more campi icated: 

r(w2) = ctnh [ctnh- 1 r(wtl +a(nep/m) X (w2- wtl] (1.8-13) 

If the reflection is small and if the attenuation is small, ( 1.8-13) is approximated 
by 

r(w2 )-1 = [r(wtl-1] [1- 2a(nap/m) X (w2 - wtl] (1.8-14) 

When we turn to immittances we find that their dependence upon position 
is not nearly so simple as that of the reflection coefficient. Even on a lossless 
line, the relation between the impedances at two reference planes is complicated: 

- Z (w 1 ) + jtan~ (w2 - Wt) 
Z(w2)= (losslessline) (1.8-15) 

1 + jZ(w 1 ) tan~ (w2 - w 1 ) 
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Zt + j tan,BZ 
= 

I+ iZt tan ,8l 

14------ l-------.t 
COAX-HB-9 

Figure 1.8-3. A transmission-line section of length l transforms the normalized 
terminal impedance Zt into a normalized input impedance Zin· 

Equation 1.8-15 expresses the impedance-transforming property of a piece of 
transmission line. If we assume that w2 >w1 , so that the plane w 1 is nearer than 
w 2 to the load, then one way of looking at (1.8-15) is to regard the length 
w 2 - w 1 of line as a transformer which sees an impedance Z(w 1 ) connected to 
its output and presents a transformed impedance Z(w2 ) at its input. Let us re­
write ( 1.8-15) so as to emphasize this transformer point of view. If a length l of 
lossless line is terminated in an impedance zt, (1.8-15) shows that its input im­
pedance is 

Zt + j tan/31 z. =--=---
In 1 + j zt tan/3l 

( 1.8-16) 

One can see from ( 1.8-15) or ( 1.8-16) that the transmission line is a differ­
ent kind of transformer from the low-frequency sort that consists of two coupled 
coils. For one thing, the transmission line's "turns ratio" is in general a complex 
number. For another, the "turns ratio" is not fixed; it depends on the load im­
pedance and also on the frequency. Unfortunately there is no microwave equiva­
lent to the low-frequency transformer with its fixed turns ratio, and this makes 
the problem of broadband impedance matching a difficult one at microwave 
frequencies. 

Equations 1.8-15 and 1.8-16 are hard to use for computation, and the most 
practical way of performing transmission-line impedance calculations is provided 
by the Smith chart, the subject of the next chapter. But we can learn quite a lot 
about the impedance-transforming property of a piece of line by looking at 
( 1.8-16) in a few interesting special cases. 

To begin with, if Zt = 1, that is, if Zt = Zc, (1.8-16) gives Z;n(l) = 1, or 
Zin (1) = Zc for any length l of line. The impedance anywhere on a reflection less 
line is equal to Zc. 

When l is a half wavelength (or any multiple of a half wavelength), i3l = 180 
degrees (or a multiple of 180 degrees), the tangents in ( 1.8-16) are zero, and we 
have 
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(1.8-17) 

A half-wave lossless line is thus a one-to-one transformer. 

When the line length is a quarter wavelength (or an odd multiple of a 
quarter wavelength), the tangents in (1.8-16) are infinite. The formula neverthe­
less gives a definite value for Zin• which we can find by taking the limit: 

- A '' limit Zt+jtan{31 z. (l =-) = 
•n 4 {31-+rr 12 1 + j Z t tan{31 

If we write this result with the unnormalized impedances we have 

2 
A Zc z. (1=-)=-

ln 4 Zt 

(1.8-18) 

(1.8-19) 

which shows that a quarter-wave line transforms Zt into its geometric extreme 
with respect to the characteristic impedance; small terminal impedances become 
large input impedances and vice versa 

Open- and short-circuited line sections, sometimes called stubs, are of con­

siderable practical importance. The input impedance of a shorted stub can be 

found by putt in(; zt = 0 in ( 1.8-16). which gives 

Zin (shorted stub) = jtan{31 (1.8-20) 

Thus a loss less shorted stub looks I ike a reactance whose value and sign depend 
on the length. The behavior of the shorted stub is summarized in Table 1.8-1. 

The open stub has an input impedance given by 

- limit Zt+jtan{31 
zin (open stub) = Zt-'>00 1 + jZttan{31 jtan{31 (1.8-21) 

and therefore behaves in just the opposite way from the shorted stub (Table 
1.8-2). 
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TABLE 1.8-1 TABLE 1.8-2 

The impedance of the shorted stub. The impedance of the open stub. 

u I I o---il!-( ------<o 

u I I 
0>----111t-( --0 

o--- ' ' ' ' ' ' ----1 E---o 
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1.9 STANDING WAVES 

The distribution of total voltage and total current on the transmission line, 
the standing wave, is the interference pattern formed by the superposition of the 
forward and reflected waves. The magnitude of the voltage standing wave due 
to a totally reflecting termination on a I ine with a relatively large amount of at­
tenuation per wavelength is shown in Figure 1.9-1. The high loss makes very ap­
parent the fact that the undulations become shallower with increasing distance 
from the termination as the reflected wave becomes more attenuated and the 
forward wave less so. In this book, though, the standing waves that we shall be 
concerned with are those on slotted lines, which can almost always be regarded 
as lossless. Our discussion will therefore be confined to lossless lines. 
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Figure 1.9-1. Voltage standing wave on 
a very lossy line. 

--to 
generator 

lVI 

w--------------------------+-
0 

I 
termination 

Standing waves on lossless lines are periodic-the maxima are all equal 
and the minima are all equal. Furthermore, the voltage maxima and minima oc­

cur at points on the line where the forward and reflected waves are respectively 
exactly in- and out-of-phase. Thus 

{ 1.9-1) 

and 

{ 1.9-2) 

Note that we do not have to put a w in parentheses after V+ and v- because only 

the magnitudes of these quantities are involved in { 1.9-1) and { 1.9-2), and the 

magnitudes of the forward and reflected waves do not change from point to 

point on a lossless line. 

The length of a single period of the standing wave-the distance between 

adjacent minima or adjacent maxima-is a half wavelength, that is to say, half 

the wavelength of a traveling wave. The reason for this is that the phases of the 

Figure 1.9-2. Voltage standing wave on 
a lossless line. 

I 
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forward and reflected waves shift in opposite directions with changing position 

on the line, so that the angle between the forward and reflected voltages changes 

by 360 degrees in just a half wavelength. 

We have already used the standing-wave ratio r to express the magnitude of 
a reflection, and we can now define this quantity in a way that explains the ori­

gin of its name. The SWR is the ratio of maximum to minimum standing-wave 

voltage. 

T = (1.9-3) 

If we substitute (1.9-1) and (1.9-2) in (1.9-3) and note that lv-1/lv+l = lrl, the 

magnitude of the reflection coefficient, we get 

1 + lrl 
r=---

1-lfl 
(1.9-4) 

This formula, which relates the SWR to the reflection coefficient, is just ( 1. 7-14), 
with which we defined the SWR in terms of lrl in Section 1.7. 

Figure 1.9-3(a) shows the shapes of the standing-wave distributions of volt­
age corresponding to three different amounts of reflection. The magnitude of 
the forward wave is the same in each of the three graphs. When lrl is small, lv-1 
is small compared with lv+l, there is not much difference between lvlmax and 
lvlmin and r is not much larger than unity. As the reflection grows larger the 
standi~g wave becomes more pronounced. When lrl = 1, so that lv-1 and IV+ I 
are equal, lvlmin = 0, lvlmax = 2 IV+ I, and r = 00• It is important to notice that 
the minima are always sharper than the maxima. This feature disappears as the 
standing wave becomes very shallow, but at the opposite extreme, when lrl = 1 
(r = oo), the minima are cusps. 

The phase of the standing-wave voltage is shown (relative to the phase at 
the terminal plane) in (b) of Figure 1.9-3. The phase of Vis an ever-increasing 
function of distance from the termination. Notice that the change in phase is 
not uniform with distance; the variation is most rapid near the minima, the more 
so the deeper the minimum. 

Whereas the standing wave ratio depends upon the magnitude of the reflec­
tion coefficient, the position of the standing wave on the line (relative to the 

termination) depends upon the angle() t of the reflection coefficient at the termi­
nal plane. The relation between (Jt and the positions of the standing-wave minima 
and maxima is easy to work out if we remember two things: 1) At a standing-
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Figure 1.9-3. Voltage standing waves for three different amounts of reflection. 
(a) Magnitudes and (b) phases of the total voltage on the line. 

wave minimum (maximum) the forward and reflected waves are exactly out-of­
phase (in-phase), that is, the angle 8 of the reflection coefficient is 180 degrees 
(0 degrees). 2) The angle 8 increases toward the load by an amount per unit 
distance of 2[3. Thus the distance w(volt min) between the termination and the 
nearest voltage minimum, or w(volt max) between the termination and the near­
est maximum, is related to 8t by 

{
180 deg} + 2[3 {w(volt min)} = et 

0 deg w(volt max) 
( 1.9-5) 
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Figure 1.9-4. The angle of the terminal reflection coefficient determines the po­
sition of the standing wave on the line. The relation between the angle of the 
reflection coefficient and the positions of voltage minima and maxima can always 
be worked out by remembering: 1) that the angle of the reflection coefficient is 
180 degrees (0 degrees) at a voltage minimum (maximum) and 2) that it increases 

toward the load by an amount 2~ per unit distance. 

Example: When the voltage extremum nearest the termination is a mini­
mum, is the termination inductive or capacitive? 

The final extremum has to be within a quarter wavelength of the 
termination because adjacent extrema are a quarter wavelength apart. In 
the present case the final extremum is a minimum, where e = 180 degrees. 
From this minimum to the termination, a distance of less than "'A/4, 8 in­
creases by an angle of less than 180 degrees. Thus Bt lies between 180 
and 360 degrees (or 0 and -180 degrees). We saw in Section 1.8 that re­

flection coefficients with angles in the lower half of the complex plane 
correspond to capacitive reactances. 

If the extremum nearest the load is a minimum, the load is capacitive; if it 
is a maximum, the load is inductive. If a minimum falls at the load, the load is a 
resistance less than Zc; if a maximum falls at the load, the load is a resistance 
greater than Zc. 

Example: A minimum is observed at a distance of 0.40"'!1. from the termi­
nal plane. This means that there is a maximum 0.15"'!1. from the termina­
tion. (One always measures the location of minima rather than maxima.) 
What is Bt? 
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Figure 1.9-5. (a) If the voltage extremum nearest the termination is a minimum, 
the termination is capacitive. (b) If the minimum is at the termination, the 
terminating impedance is resistive and smaller than the characteristic impedance. 
(c) A maximum falls nearest an inductive termination, and (d) a maximum falls 
at a resistive termination that is larger than the characteristic impedance. 

From the final maximum, where 8 is 0 degrees, to the termination, 
an electrical "distance" of 0.15 wavelength X 360 degrees/wavelength= 
54 degrees, 8 increases by 2 X 54 degrees= 108 degrees. Thus 8 t = 108 
degrees. 

The impedance, as we have seen, is in general a complex number and varies 
in a complicated way with position on the line. But at standing wave maxima 
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and minima the impedance is purely resistive and is very simply related to the 
amount of reflection on the line. The impedance Z at any point is related to the 
reflection coefficient by equation 1.8-4, 

At a voltage minimum the angle of r is 180 degrees, so the r (volt min)= -lrl. 
Thus the impedance at a voltage minimum is 

1-lrl Zc 
Z(volt min) = Zc ~ = --;- ( 1.9-6) 

At a voltage maximum the angle of r is zero, so that r(volt max) = lrl, and 

1 + 1r1 
Z(volt max) = Zc 1 _ lrl = Zcr (1.9-7) 

We have talked throughout this section about the voltage standing wave. 
The reason is that it is much easier to make a probe that samples the electric field 
in the line than it is to make a shielded loop that samples the magnetic field, and 
consequently it is almost always the voltage standing wave that one measures on 
a slotted I ine. Moreover, the current and voltage distributions have exactly the 
same shape and same standing-wave ratio. They differ only in position; the cur­
rent and voltage standing waves are displaced relative to each other by a quarter 
wavelength, so that a current maximum is a voltage minimum, and vice versa. 

Mathematically, the connection between the current and voltage standing waves 
is 

1 A. 
II(w)l =- IV(w ±-)I zc 2 

Figure 1.9-6. The current and voltage 
standing waves are displaced relative to 
each other by a quarter wavelength. 

48 1.9 STANDING WAVES 

(1.9-8) 

COAX-HB-24 



The reader is invited to supply a derivation of equation 1.9-8; with the help of 
the results of this Section and Section 1.7 he should find that it is not difficult. 
It follows from (1.9-8) that 

and (1.9-9) 

1 
IIImin = z lvlmin 

c 

and therefore that 

IVImax 
=--- =r 

IV! min 
(1.9-10) 
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CHAPTER 2 

The Smith Chart 

Transmission-line calculations that one frequently has to make, sometimes 
over and over again, would be extremely laborious if they had to be done by 
computation from the formulas given in the previous chapter. The Smith chart 
provides a quick and powerful graphical method for performing many of these 
calculations. 

2.1 THE REFLECTION-COEFFICIENT PLANE 

Figure 2.1-1 shows how a complex number z = x + jy is represented as a 
point on the complex plane. The real part xis set off on the horizontal real axis, 
positive toward the right, and the imaginary party is set off on the vertical imag­
inary axis, positive upward. We may also express the complex number z by giving 
its polar coordinates. These are the magnitude (or modulus) r = .Jx2 + i and 

angle (or argument or amplitude) 8 = tan-1 y/x. 

Figure 2.1-1. The complex number z 
is represented by a point on the com­
plex plane. We may express z in terms 
either of its rectangular components x 
andy or of its polar components rand 8. 

z 

real 
axis 

COAX·HB-41 

The particular complex numbers that we wish to plot are reflection coef­
ficients, and the particular plane whose points represent reflection coefficients 
we shall call the reflection-coefficient plane. We know that the magnitude of a 
reflection coefficient cannot be greater than unity, at least as long as the load is 
passive; therefore the part of the reflection-coefficient plane that we shall be con-
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Figure 2.1-2. The reflection-coefficient chart. 

'~o 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1.0 

I 
COAX-HB-37 

cerned with is that part lying within a circle of unit radius about the origin. Fig­
ure 2.1-2 is a chart of this circular region. Since it is usually most convenient to 
work with the polar form of a reflection coefficient, the chart includes a radial 
scale and peripheral degree circle so that values of the magnitude lrl and angle 8 
can be located with a straightedge and dividers. 
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Example: A lossless, air-dielectric line is excited at 600 MHz. The reflec­
tion coefficient at reference plane b is 0.5 ~60 deg. How do we find the 
point on the reflection-coefficient chart corresponding to plane a, 10 
centimeters toward the generator? the point corresponding to plane c, 
10 centimeters toward the load? 

In an air-dielectric line the velocity of propagation is 3 X 1010 cm/s, 
so that at 600 MHz the wavelength is 3 X 1010 cm-s-1 /6 X 108 s-1 =50 em, 

to 

a b I;_.., 
~~ ~ ~ 

generator I 
I I 

~IOom-ttmo020'~ (elect. length=) 
72 deg 

10 ,.ord generator 

/ t1=90deg ~ 
60 deg 

~ t1=-90deg / 

toward load 

to load ---

Figure 2.1-3. The angle 8 of the reflection coefficient changes with position on 

the line twice as fast as the phase of a traveling wave. 8 increases toward the 

load. 
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and a distance of 10 em, or (10 cm)/(50 em/wavelength) = 0.20 wave­
length, shifts the phase of a traveling wave through an angle of 
360 deg/wavelength X 0.20 wavelength = 72 degrees. 

We saw in Section 1.8 that lrl is everywhere the same on a lossless 
line, while 8 changes with position twice as fast as the phase of a traveling 
wave. The change in 8 is positive (counterclockwise) in the direction of 
the load. Thus to find the points ra and rc on the reflection-coefficient 
chart, we start at rb and move clockwise and counterclockwise respec­
tively in circular arcs about the chart's center through angles of 
2 X 72 = 144 degrees (Figure 2.1-3). 

Move two degrees around the chart for each degree along the line. Move 
counterclockwise toward the load, clockwise toward the generator. 

Example: Where are the voltage standing-wave minima on the line of the 
preceding example? 

A voltage minimum occurs where the forward and reflected voltages 
are in phase opposition, that is, where 8 = 180 degrees. A maximum oc­
curs where they are in phase-where 8 = 0 degrees. To get to the 
nearest 8 = 180-degree radial from rb (Figure 2.1-3), we move counter­
clockwise on the chart through 120 degrees. This corresponds to moving 
along the line toward the load through an electrical "distance" of 60 
degrees. Therefore there is a voltage minimum 

1 
60 deg X 

360 
wavelength/degree= 0. 167 wavelength 

or 

0.167 wavelength X 50 em/wavelength = 8.35 em 

toward the load from plane b. 

2.2 THE IMPEDANCE GRID 

A Smith chart is a reflection-coefficient chart on which has been superim­
posed a set of impedance (or admittance) coordinates. It thus combines the 
properties of the reflection-coefficient chart with a graphical means for perform­
ing the important impedance-reflection-coefficient transformation expressed in 
equations 1.8-3 and 4. 

Figure 2.2-1 shows a Smith chart with a normalized impedance grid. The 
loci of constant R, the resistive component of Z = Z!Zc, and constant X, there­
active component, are sets of mutually orthogonal circles, as shown in Figure 
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The Smith Chart. 
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It is a reflection-coefficient chart with a superimposed grid of impedance coordi­
nates. The chart shown here has a normalized impedance grid. 
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Figure 2.2-2. The loci of constant R and constant X are sets of mutually 
orthogonal circles. 

2.2-2. The centers of the R-circles lie along the horizontal axis of the chart. The 

centers of the X-circles lie on the vertical line that is tangent to the right-hand 
side of the chart. All the circles of both sets have in common the point at the ex­
treme right of the chart. 

The nature of the impedance in different regions of the chart is indicated in 
Figure 2.2-3. Points below the horizontal axis correspond to impedances with 
capacitive reactive components, points above to those with inductive compo­
nents. Impedances lying on the horizontal axis· are resistive. Impedances to the 
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left of the vertical axis have magnitudes that are less than Zc; those to the right, 
greater than Zc. The magnitude of impedances lying on the vertical axis is equal 
toZc. 

Smith charts are commercially available as graph paper. They are also 
available on plastic discs with pivoted radial arms in the form of transmission­
line calculators. The most commonly used chart has a normalized impedance 
grid like that of Figure 2.2-1, except more closely divided. The charts shown in 
the figures in this book are intended for illustration rather than calculation, and 
for clarity they have been drawn with considerably abbreviated grids. The reader 
may wish to have at hand a working chart on which to follow the examples we 
shall give. 

Example: What is the reflection coefficient due to an impedance of 
25 + j35 ohms on a 50-ohm line? 

The normalized impedance Z is Z/Zc = (25 + j35) ohms/50 ohms= 
0.5 + j0.7. We locate this point on the chart at the intersection of the 

.9=180 deg-

c: 
0 
~ 

.9=90 deg 
I 

c: 
0 
~ 

:;; ---- - -+------ .... 
1/) Q) 

Q) c 
Q) 

capacitive 

I 
I 

6'=-90 deg 

.... 
0'1 

- .9=0deg 

COAX-HB-40 

Figure 2.2-3. The nature of the impedance in different regions of the Smith 
chart. 
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R = 0.5 and X= +0.7 circles {Figure 2.2-4) and find that it corresponds 
to a reflection coefficient of 0.52 4100.5 deg. We leave it an an exercise 
for the reader to convince himself of the Smith chart's utility by com­
puting this result with equation 1.8-3. 

Example: A quarter-wavelength 50-ohm lossless line is terminated in an 
impedance Zt = 20 + j1 00 ohms. What is its input impedance? 

We enter the chart {Figure 2.2-5) at the normalized terminal imped­
ance, Zt = 0.4 + j2.0, and then move clockwise {toward the generator) in 
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Figure 2.2-5. A terminal impedance of 20 + j1 00 ohms is transformed by a quar­
ter-wave line into an input impedance of 4.5- j24 ohms. 
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a circular arc about the chart's center through an angle equal to twice the 
line's phase shift, that is, through 

2 X '!.. wavelength X 360 degrees/wavelength = 180 degrees. 
This brings us to the normalized impedance 0.09 - j0.48, which we 
multiply by 50 ohms to get the input impedance of 4.5 - j24 ohms. 

The foregoing example shows how the Smith chart is used to calculate the 
impedance anywhere on a lossless line. The impedance makes a full circle of the 
chart for each half wavelength of line. 

2.3 THE RADIAL SCALES 

In addition to the reflection-coefficient scale, Smith charts usually include 
a number of radial scales on which are marked off other parameters that depend 
on the relative magnitude of the reflection. Paper charts have these scales printed 
at the bottom of the sheet so that the parameters can easily be picked up with 
dividers. Some of them are included on the radial arms of the calculators. 

In addition to the magnitude of the reflection coefficient, three other 

quantities are commonly used to express the amount of reflection from a termi­
nation. They are the standing-wave ratio, the return loss, and the reflection loss, 
all of which were defined in Section 1.7. Many Smith charts have scales for 
these quantities. 

Example: What is the standing-wave ratio due to a terminating imped­
ance of 27.5 + j50 ohms on a 50-ohm line? What is the return loss? 
What proportion of the power incident on the load is reflected? 

The normalized terminal impedance is 0.55 +j1.0. If we locate this 
point on the Smith chart (Figure 2.3-1) and carry the radius down to the 
appropriate radial scales we get a standing-wave ratio of 4.0 ( 12 dB), a 
return loss of 4.4 dB, and a reflection loss of 1.9 dB. Now, a reflection 
loss of 1.9 dB corresponds to a power ratio of 1.5, so that the power in­
cident on the load is 1.5 times the power absorbed by the load. Thus one 
third of the incident power is reflected. 

Actually we can read standing-wave ratios from the Smith chart without 
referring to the SWR scale. We saw in Section 1.9 (equation 1.9-7) that the nor­
malized impedance at a voltage maximum is equal to the standing-wave ratio. 
Thus we can read SWR's from the normalized-resistance scale along the e = 0 
radial. 

The scale marked "attenuation: 1-dB steps" (or "transmission loss: 1-dB 
steps") facilitates taking into account the effect of the line's attenuation. As we 
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Figure 2.3-1. The parameters that express the relative magnitude of the reflec­

tion are marked off on radial scales. 
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attenuation: 1-dB steps 
toward generator COAX-HB-36 

toward load 

Figure 2.3-2. Attenuation in the line causes the magnitude of the reflection 
coefficient to diminish toward the generator. The distance between consecutive 
marks on the "attenuation - 1-dB steps" scale corresponds to the change in lf'l 
due to 1-dB attenuation. 
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saw in Section 1.8, attenuation causes the reflection coefficient to grow smaller 
in the direction of the generator. A section of line whose total attenuation is 
A(dB) reduces the reflection coefficient by a factor 10-o.lA(cts>. The "attenu­
ation: 1-dB steps" scale (Figure 2.3-2) has unnumbered marks at distances from 
the center of the chart equal to 10-o (=1), 10-0 · 1 , 10-0 · 2 , etc times the 
chart's radius, so that the radial distance between two consecutive marks repre­
sents the change in lrl due to 1-dB attenuation in the line. 

Example: The far end of a piece of cable is shorted and a standing-wave 
measurement at the near end gives a standir]g-wave ratio of 3.0. When a 
load is substituted for the short, the near-end SWR is 1.5. What is the 
SWR of the load? 

Refer to Figure 2.3-3. The short causes a far-end SWR of infinity, 

and, since there are three 1-dB steps between infinity and the near-enJ 
SWR of 3.0, the attenuation of the cable is 3 dB. To find the SWR of the 
load, we start at the near-end SWR of 1.5 and move outward three 1-dB 
steps, arriving at a standing-wave ratio of 2.3. 

2.4 WAVELENGTH CIRCLES 

The most convenient unit in which to measure distance along the line is 
usually the wavelength. For this reason the Smith chart has around its periphery, 
in addition to the 1:1-circle, two circular scales marked off in wavelengths, one in­
creasing counterclockwise and marked "wavelengths toward load," the other in­
creasing clockwise and marked "wavelengths toward generator." Each of these 
scales increases by one half wavelength in a full circle around the chart. The 
Smith chart calculators have movabie wavelength circles. On printed charts, 
these circles are necessarily fixed, and their zeros are on the left side of the chart, 
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Figure 2.4-1. Wavelength circles. 
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at e = 180 degrees. This choice of the zero position facilitates calculations in­
volving positions of standing-wave minima. 

Example: A voltage standing-wave minimum is found 0.30 wavelength 
from the termination of a lossless line. What is the angle 8t of the termi­
nal reflection coefficient? If the standing-wave ratio is 2.0, what is the 
terminal impedance? 

Refer to Figure 2.4-2. A voltage minimum occurs where the reflec­
tion coefficient is 180 degrees. If we start at thee = 180-degree radial 
and go around the chart 0.30 wavelength toward the load we find that 
8t = 36 degrees. If the SWR is 2.0, the normalized terminal impedance is 
1.57 + j0.70. 

64 2.4 WAVELENGTH CIRCLES 



0 

o'> 
O· 

. 
to generator j 

i""l4----- 0.30A ----••-11 
~ 

0 

toward load 

.,o 
O· 

/~·-· 

0 .25 

Figure 2.4-2. Using the Smith chart to determine terminal impedance from SWR 
and position of voltage minimum. 
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2.5 ADMITTANCE 

The Smith chart may be thought of as a "map" of the impedance plane, 
drawn on the reflection-coefficient plane according to the (normalized) imped­
ance-reflection-coefficient transformation 

- 1 +r 
Z=--1-r (2.5-1) 

If we turn (2.5-1) upside down, we obtain a formula for the (normalized) 
admittance as a function of r: 
2.=¥=1-r z 1 + r (2.5-2) 

Let us look at the right-hand sides of equations 2.5-1 and 2.5-2. Not only are the 
two functions (1 + r)/(1- nand (1 - r)/(1 + n reciprocals of each other, they 
are also transformed into each other by the substitution of -r for r. Thus we 
see that the normalized admittance Y(r) corresponding to a particular reflection 
coefficient r is equal to the normalized impedanceZ(-r) corresponding to-r. 
We may express this important result by the equation 

(2.5-3) 

Example: What is the normalized admittance Y corresponding to a nor­
malized impedance Z of 2.0 + jO? 

Of course Y = 1/2.0 + jO. According to (2.5-3) we should get this 
same answer if we first find the value of r that corresponds to Z = 2.0 
and then find the impedance corresponding to minus this value of r. The 
value of r corresponding to z = 2.0 is 

r(when Z = 2.0) = ----- (z- 1) 2.0- 1 

Z + 1 Z= 2.0 

The value of Z corresponding to r = -1/3.0 is 

Z(when r = -1 /3.0) = -- = - ~1+r) 
1-r r=-1/3.0 

3.0 

1- _2_ 
3.0 

1 
1+-

3.0 

We note that we can derive (2.5-3) in another way. From the point ron 
the Smith chart one reaches the point -r by going around the chart a quarter 
wavelength in either direction. Equation 2.5-3 follows from the fact that, as we 
saw in Section 1.8 (equation 1.8-15), normalized impedances a quarter wave­
length apart on a lossless line are reciprocal. 

Equation 2.5-3 shows us how to use a Smith chart with a normalized im­
pedance grid to make conversions between impedance and admittance. The 
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point -r is the one diametrically opposite rand equidistant from the center of 
the chart. Thus (2.5-3) says that the normalized admittance of a point on the 
chart is equal to the normalized impedance coordinates of the image point sym­
metrically located on the opposite side. 

Example: What is the admittance corresponding to a reflection coeffi­
cient of 0.5 4135 deg on a line whose characteristic admittance is 20 
millimhos? 

The point r = 0.5 4135 deg is shown on the Smith chart of Figure 
2.5-1. To find the corresponding normalized admittance we proceed in a 
straight line through the chart's center to the symmetrically located point 
on the other side. This is -r. The normalized impedance at -r is 
1.4- j1.3, and according to (2.5-3) this is equal to the normalized admit­
tance corresponding to r. Thus Y(when r = 0.5 4135 deg) = 1.4 -j 1.3. 
The unnormalized admittance is Y X 20 millimhos = 28- j26 millimhos. 

Figure 2.5·1. The normalized admittance corresponding to the point r is equal 
to the normalized impedance corresponding to the point -r. 
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Figure 2.5-2. Smith chart with normalized admittance grid. 

Equation 2.5-3 also shows us how to make a Smith chart with a normalized 
admittance grid. If we rotate the grid of the normalized impedance chart through 
180 degrees, so that the grid coordinates that used to be at the point rare now 
at -r, the numbers that we read off the rotated grid at a given point on the chart 
are the normalized admittance belonging to that point. If we also change the 
labels from "resistive component" to "conductive component" and from "reac­
tive component" to "susceptive component" we have the admittance chart 
shown in Figure 2.5-2. 
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Figure 2.5-3. The admittance chart of Figure 2.5-2 after it has been rotated 180 
degrees. The 8-circle now has its zero on the left-hand side. 

Admittance charts are available, and so are charts with superposed imped­
ance and admittance grids. We do not need special admittance charts, however, 
for we can plot normalized admittances directly on the normalized impedance 
grid without going through the additional step of transferring the point across 
the chart. Let us take the admittance chart of Figure 2.5-2 and rotate it-the 
whole chart this time, not just the grid-through 180 degrees. The result of this 
rotation is shown in Figure 2.5-3. Now, if we compare Figure 2.5-3 with Figure 
2.2-1 we see that the combined effect of the two transformations-a 180-degree 
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rotation of the grid and a 180-degree rotation of the whole chart-is to leave us 
with something that looks just like the impedance chart that we started with. 
There are two differences. First, the resistance coordinates have become con­
ductance coordinates and the reactance coordinates are now susceptance coordi­
nates. Second, since the reflection-coefficient plane itself has been rotated 
through 180 degrees, the angle e of the reflection coefficient is now zero at the 
left side of the chart (though it still increases counterclockwise). 

Figure 2.5-4. One can use the normalized impedance chart for admittances 
simply by reading "conductive component" for "resistive component" and 
"susceptive component" for "reactive component" and remembering that 180 
degrees must be added to readings on the "angle of reflection coefficient" circle. 
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Apparently, then, we can use the normalized impedance chart when we are 
working with admittances simply by reading "conductive component" for "re­
sistive component" and "susceptive component" for "reactive component." All 
the properties of the Smith chart that we have discussed in the previous section 
of this chapter are retained when the chart is used in this way except that the 
"angle of reflection coefficient" circle does not apply as it is printed. Angles 
read from this scale must have 180 degrees added or subtracted before they are 
correct. The "wavelengths toward generator" and "wavelengths toward load" 
circles are correct as they stand, though one should bear in mind that voltage 
minima, which o.ccur at 8 = 180 degrees, are now at the right-hand side of the 
chart. 

Example: A capacitance of 10 pF in parallel with a resistance of 300 
ohms constitutes the termination of a 300-ohm line that we will consider 
lossless. If the line is driven at 100MHz,will the standing-wave extremum 
nearest to the termination be a voltage maximum or minimum? Where 
will it be? 

The characteristic admittance of the line is Yc = 1/300 ohms = 

3.33 X 10-3 mho. The susceptance of a 1 0-pF capacitance at 100 MHz is 

B = 27TfC = 6.28 X 100 X 106 s- 1 X 10 X 10-12 farad 

= 6.28 X 10-3 mho, 

and the normalized susceptance ii is 

6.28 X 10-3 mho/3.33 X 1 0-3 mho = 1.89. 

The normalized conductance corresponding to the resistance of 300 
ohms is 1. The normalized terminal admittance Yt of 1 + j1.89 is 
plotted on the Smith chart of Figure 2.5-4. As we move around the chart 
from the termination toward the generator we first cross the horizontal 
axis on its right-hand side. Since this is now thee= 180-degree radial, 
the first extremum is a voltage minimum. It is 0.065 wavelength from 
the termination. 

Notice in the example that a capacitive admittance falls in the upper half 
of the chart because it has a positive susceptive part. A capacitive impedance, 
which has a negative reactive part, would fall in the lower half. 

In this chapter we have given the reader only a sketchy introduction to the 
most commonly used kind of Smith chart. We have not discussed the many dif-
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ferent varieties of the chart that are in use, nor the many kinds of calculation 
that can be done with the chart's help. We leave it to the reader to instruct him­
self as the need arises. 
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CHAPTER 3 

Two- Ports and Discontinuities 

3.1 THE SCATTERING PARAMETERS 

We saw in Section 1. 7 that we may characterize a one-port device by 1} 
choosing a convenient reference plane in the associated transmission line and 2} 
specifying the reflection coefficient or immittance that the device presents at 
this reference plane. Such a characterization ignores what is actually going on in­
side the termination, but it allows us to predict the effect that the termination 
will have on the system to which it is connected. A two-port presents us with an 
analogous situation. We are often not concerned with the details of wave propa­
gation inside the device itself; we simply want to know what the effect will be of 
inserting the two-port into the microwave system. 

Now, while a single reference plane and a single complex number - are­
flection coefficient or immittance - completely characterize a one-port, two 
reference planes and two or three or four complex numbers are needed for a 
complete representation of a two-port. The reader is undoubtedly familiar with 
some of the many sets of two-port parameters, the y- or h-parameters, for 
example, used in transistor circuit design at lower frequencies. But of all the 
two-port representations, by far the most useful at microwave frequencies is the 
set of four numbers called scattering parameters, or s-parameters. Scattering 
parameters were invented in 1937 by a physicist, who used them to solve a 
problem in nuclear physics. When physicists went to work on microwave prob­

lems during the World War II development of radar, they brought the s-parame­
ters with them into electrical engineering. 

Figure 3.1-1 shows a two-port "black box" with two transmission lines 
sticking out of it; reference planes t 1 and t 2 , located in these lines, define ports 
1 and 2. In the most general possible case there will be both an incident and an 
outgoing (scattered) wave at each port. We have written VJ.+ and v; to stand for 
the incident and outgoing voltages at port 1, and v; and v; for those at port 2. 

Whereas the outgoing wave at a passive termination is due entirely to re­
fl ection of energy from the incident wave, this is not generally true at the ports 
of a two-port. The outgoing wave at port 1, for example, can be due partly to 
refl ection of energy that is incident at port 1 and partly to transmission through 
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Figure 3. 1-1. In general there can be both an incident and a scattered wave at 
each port. 

the two-port of energy that is incident at port 2. For this reason we have to use 
not just a single coefficient but two coefficients to describe the generation of an 
outgoing wave at port 1: 

~{ = su v; + s12 v; (3.1-1) 

The coefficient s11 accounts for reflection of some of the incident wave at port 1 
and s12 accounts for transmission through the two-port of some of the incident 
wave at port 2. Likewise two more coefficients describe the generation of v;: 

(3.1-2) 

Here s21 accounts for transmission of Vj_+ and s22 for reflection of V2+. The num­
bers s11 , s12 , s21 , and s22 are the scattering parameters. t Like the r's that de­
scribe reflections from one-ports, the scattering parameters are complex numbers, 
ratios of incident and outgoing voltages. As a matter of fact, it is quite appro­
priate to think of the s-parameters as a generalization of the notion of reflection 
coefficient. 

Let us look a I ittle more closely at the physical meaning of each of the 
scattering coefficients. First we consider the reflection parameters s11 and s22 . 
Suppose a reflection less load terminates port 2, as shown in Figure 3.1-2. The in-

tMany engineers choose to use "normalized" in- and out-going voltages when they define 
the scattering parameters: 

:t 1 ± 
(VI ) normalized = . 177" V,.. 

vZc1 

:t 1 ± ( v2 ) normalized = r;;- v2 
vZc2 

where Zc1 and Zc2 are the characteristic impedances of the lines in which ports 1 and 2 are 
located, As the reader can see by looking at (3.1-1) and (3.1-2), this alternative choice does 
not affect su and sn, but it does make a difference in s12 and s21: 

~c1 
(s 12) normalized = • s12 (s21) normalized = -- · S21 

Zc2 
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Figure 3.1-2. When port 2 sees a reflectionless termination, the reflection coeffi­
cient r 1 presented by port 1 is equal tO Su. 

cident wave at port 2 is just the wave reflected from the termination, which in 
the present case is zero. When v; = 0, equation 3.1-1 becomes 

But VJ.-/VJ.+ is the reflection coefficient r 1 that we measure when we look into 
port 1, so that we have 

su = r 1 (with reflection less load on port 2) (3.1-3) 

The coeffi cient s11 is the reflection coefficient presented by port 1 when port 2 
has a reflectionless termination. The same argument would obviously be valid if 
we put the reflectionless load on port 1 instead of port 2, so that 

s22 = r 2 (with reflection less load on port 1) (3.1-4) 

Since s11 and s22 are reflection coefficients measured at one port when there is 
no incident wave at the other, they represent reflections that are intrinsic to the 
two-port. 

Let us once again put a reflectionless load on port 2. When there is no in­
cident wave at port 2, the outgoing wave there is due entirely to transmission 
through the two-port of energy incident at port 1, and the ratio V2/VJ.+ that we 
measure under these circumstances is the voltage gain that a traveling wave expe­
riences as it traverses the two-port from port 1 to port 2. If V2+ = 0, equation 
3.1-2 becomes 
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whence we have the following interpretation of s21 : 

(v;) 
VI.+ + 

V2 = o 

Likewise, 

traveling-wave voltage gain 
from port 1 to port 2 

traveling-wave voltage gain 
from port 2 to port 1 

(3.1-5) 

(3.1-6) 

Example: What are the scattering parameters of the 1-to-n turns-ratio 
ideal transformer shown in Figure 3.1-3? 

Let the characteristic impedances of the lines in which the ports are 
located both be Zc. If we put a reflectionless load on port 2, the imped­
ance connected to the right-hand winding is Zc, and the impedance that 
we measure when we look into port 1 is Zcln 2

• Therefore the reflection 
coefficient presented by port 1 is 

n2 
- 1 

I\ (reflectionless load on port 2) -1-- su 
- + 1 
nz 

Likewise 

r2 (reflectionless load on port 1) 
n2 -1 

--- s22 -su 
n2 +1 

n 
Figure 3.1-3. 
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We know that the total voltage at port 1 and the total voltage at 
port 2 are in the ratio 1 ton, that is 

But when there is a reflection less load on port 2 we also know that v; = 0 
and VI.- I VI. .. = s11 • Thus in this special circumstance 

or 

= 0 

n 

2n 
= n{ 1 + su) = -- = s21 

1 + n 2 

In the other direction we of course have 

2_,__ 
n 

St2 ---
1 

1 +­
n2 

2n 

Example: Let t 1 and t2 be two reference planes in a uniform transmis­
sion line {Figure 3.1-4). The length l of line between these two planes 
may be regarded as a two-port. What are its s-parameters? 

If the reflection coefficient that we see when we look toward the 
right at t 2 is zero, it will also be zero at t 1. Thus s11 = 0, and we can see 

Figure 3.1-4. A section of trans­
mission line may be regarded as 

a two-port with s11 = s22 = 0 

--20
1 

Q(dB/m)l 
and s12 = s21 = 10 
4 -{31. ~-----l---~ 

t2 
COAX·HB·74 
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likewise that s22 = 0. The voltage of a traveling wave is multiplied by a 
_..!...a(dB/m)Z 

factor 10 20 as the wave traverses the I ine segment in either di-
rection, and its phase is shifted through an angle -{31. Therefore s12 = 

-~ a(dB/mJl 
S21 = 10 4 -{3[. 

3.2 TWO-PORTS WITH SPECIAL PROPERTIES 

In the most general possible case, all four of a two-port's s-parameters are 
different, independent numbers, and we must measure or calculate each of them 
in order to obtain a complete description of the device. But virtually any two­
port we are likely to encounter in practice will have one or more properties that 
tell us, even before we look at the particular device, simplifying relations among 
its s-parameters. 

For instance, if the two-port is passive, that is, if it does not contain tran­
sistors or other sources of microwa~e energy, we know that we cannot get out of 
it energy that we do not put in. This means, for one thing, that the reflected 
component of the outgoing wave at either port cannot be larger in magnitude 
than the incident wave at that port, which we can state compactly by writing 

ls11 I~ I , ls22 I~ I (passive two-port) (3.2-1) 

It means, for another, that a transmitted wave cannot be power-amplified by the 
two-port. Quantitatively, 

Zc2 2 
--ls12 1 ~I 
Zc1 

(passive two-port) 

where Zc1 and Zc2 are the characteristic impedances of ports 1 and 2. 

(3.2-2) 

Many of the two-ports one encounters are electrically symmetric, which is 
to say that their effect on the microwave system is unaltered if they are turned 
around end for end. Obviously in a symmetric two-port it makes no difference 
which port is labeled "1" and which "2". 

(3.2-3) 
(electrically symmetric two-port) 

(3.2-4) 

It is not necessary that the device be symmetric in order to have (3.2-4) 
satisfied. It can be shown that a reciprocal two-port has the property 
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Zc2 s12 = Zc1 s21 (reciprocal two-port). (3.2-5) 

We will not give a definition of reciprocity, but, generally speaking, a device is 
reciprocal if 1) it is linear, i.e., it-s parameters do not change with the magnitudes 
of the fields, and 2) it contains only isotropic media-ones that have the same 
properties in all directions. Thus transmission lines, connectors, tuners, direc­
tional couplers, filters, attenuators, in fact any structure made of ordinary dielec­
trics and conductors is reciprocal. Amplifiers, mixers and ferrite isolators are 
non-reciprocal. 

Another important class of two-ports comprises the ones that are lossless. 
By lossless we mean that they do not dissipate any energy internally. This is not 
the same as saying that they have zero insertion loss, since, as we shall see in 
Section 3.4, insertion loss can be due to reflection as well as dissipation. Sections 
of air-dielectric line, connectors, and tuners are devices that can be considered 
loss less for most purposes. In a loss less device the total incident power has to be 
equal to the total outgoing power. This constraint leads to the following 
relations: 

ls11 I = ls22 I +-' (3.2-6) 
0 
Q_ 

c-!J 
(3.2-7) ~ 

Q) 

]j 
arg s12 + arg s21 = arg s11 + arg s22 ± 1, 3, 5, · · · X 180 deg _Q (3.2-8) 

Notice the magnitude signs. Without them, (3.2-6) is the same as (3.2-3) and the 
first part of (3.2-7) is the same as (3.2-5). 

3.3 MISMATCH LOSS 

The term "mismatch loss" is used when one talks about the transfer of 
power across a single junction. Mismatch loss measures the ratio by which the 
power transferred from the source side to the load side of the junction falls short 
of the amount that would be transferred if the two sides were "matched." But 
the term "match" is used in several different senses, so it is necessary to make 
clear which "matched" condition "mismatch loss" refers to. 

It is a well-known theorem that the maximum possible amount of power is 
extracted from a source by a load whose impedance is equal to the complex con­
jugate of the source impedance.t Thus a source whose impedance is 50+ j25 

tProvided the source is linear. A linear source is one whose impedance and emf are both in­
dependent of the load, that is, independent of any incoming wave. The catch in the maxi­
mum-power theorem is that the primary sources of microwave power-oscillators and 
amplifiers-are not in general linear. A good laboratory approximation to a linear source is 
provided by an oscillator that is isolated from its load by 6 or 10 dB of attenuation. 
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Figure 3.3-1. The amount of power 
that the source delivers to the load de­
pends on the reflection coefficients rs 
of the source and r 1 of the load. 

~r~ 
1 ..... s_o_u_rc_e ...... l 11~--;__1 o_a_d_. 

. t· I JUne 1on 

plane 
of the 
junction 
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ohms will deliver maximum power to a load impedance of 50- j25 ohms. If the 
source and load impedances are complex conjugates of each other, so are the 
source and load reflection coefficients. Thus we may state the maximum power 
transfer theorem by saying that maximum power is extracted from a source by a 
load whose reflection coefficient is the complex conjugate of the source reflec­
tion coefficient. 

Zz =_ comp. conj .. Zs} 
condition for maximum power transfer 

rz - comp. conj. rs 
(3.3-1) 

The maximum amount of power that the source can deliver is called the source's 

available power. 

Example: A source and load are connected at a junction whose charac­
teristic impedance is 50 ohms. When the load is reflectionless (rz = 0), 
the power delivered to the load is 0.02 watt. A measurement of there­
flection coefficient rs of the source yields a value of 0.5 4 + 30 deg. How 
much power will the source deliver to a conjugate load? 

When the source is terminated in a reflectionless load there is only 
one wave crossing the source-load junction. This is the primary wave 
emitted by the source. It is totally absorbed by the load, and we calcu­
late that it must have an amplitude of 

y0.02 watt X 50 ohms = 1.0 volt rms 

Let us see what happens when the load is a conjugate match to the 
source: rz = comp. conj. rs = 0.5 4- 30 deg, Now the 1-volt primary 
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wave is partially reflected by the load. The amplitude of this reflection 
is 0.5 volt and its phase is -30 degrees with respect to the incident pri­
mary wave. The mflected wave in turn experiences a partial reflection 
from the source, so there is a second wave incident on the load whose 
amplitude is 0.25 volt 4 0 deg. There is a second reflection from the load 
of amplitude 0.125 volt 4-30 deg, and so on. The total voltage incident 
on the load is 

( 1 + 0.25 + 0.0625 + · · ·)volts 4 0 deg. = 1.33 volts 4 0 deg. 

The power incident on the load is (1.33 volts) 2 /50 ohms= 0.035 watt. 
The total voltage reflected from the load is 

(0.5 + 0.125 + · · ·) volt 4 -30 deg = 0.67 volt 4 -30 deg 

and the reflected power is 

(0.67 volt) 2 /50 ohms = 0.0090 watt 

The power absorbed by the load is thus 0.035 - 0.0090 
This is the available power of the source. 

0.026 watt. 

This example explains the apparent paradox that a reflecting load can absorb 
more power than a nonreflecting one if the source is not reflectionless. 

One kind of mismatch loss is the conjugate mismatch loss. This is the loss 
that occurs because a nonconjugate load does not extract the available power 
from the source. 

conjugate-mismatch-loss ratio 
source's available power 
power delivered to load 

(3.3-2) 

The formula for the conjugate-mismatch-loss ratio as a function of the source 
and load reflection coefficients is 

conjugate-mismatch-loss ratio (3.3-3) 

One rarely knows the angles of 1'5 and I'z, and without them one cannot 
calculate the numerator of (3.3-3). However, even if just the magnitudes of 1'5 

and I'z are known, (3.3-3) can still be used to calculate the largest and smallest 
values that the conjugate mismatch loss can have. For given values of 11'5 I and 
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I rzl, the right-hand side of (3.3-3) is maximum when arg rs + arg rz = 180 deg 
and minimum when arg rs + arg fz = 0 deg. Thus, for given magnitudes of source 
and load reflections, 

maximum 
conjugate­
mismatch­
loss ratio 

minimum 
conjugate­
mismatch­
loss ratio 

(3.3-4) 

Several features of these formulas are worth noting. 1) It does not matter which 
reflection is associated with the source and which with the load, since the formu­
las are symmetrical with respect to source and load. 2) If one side of the junc­
tion is reflectionless, the maximum and minimum losses are equal. 3) If the 
magnitudes of the two reflections are equal, the minimum mismatch loss is zero 
(ratio is unity). This is no surprise, since if lr5 1 = lrzl there could be a conjugate 
match if arg rs = -arg rz. 

Example: What are the maximum and minimum conjugate-mismatch­
loss ratios when the source SWR is 1.6 and the load SWR is 1.2? 

maximum 
conjugate-

1 + 
(1.6X1.2-1) 2 

1.11 (0.45dB) 
mismatch- 4 X 1.6 X 1.2 
loss ratio 

minimum 
conjugate-

1 + 
(1.6- 1.2) 2 

1.021 (0.090dB) 
mismatch- 4 X 1.6 X 1.2 
loss ratio 

For many reasons a microwave system is usually made as reflection less as 
possible, and consequently electrical specifications of microwave components 
and equipment are usually stated with respect to reflectionless rather than conju­
gate terminations. 
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Example: The specified output power of a signal generator is conven­
tionally assumed to be the power that the generator would deliver to a 
reflection less load. How large a mismatch error do we make if we use a 
power meter whose SWR is 1.3 to measure the output power of a signal 
generator whose SWR is 1.2? 

From (3.3-2) we have 

power that source would 
deliver to a reflection less load 

power delivered to 
actual load 

conjugate-mismatch-loss ratio 
of source and actual load 

conjugate-mismatch-loss ratio 
of source and reflectionless load 

'(3.3-5) 

As we saw above, we can calculate an upper and a lower lim it to the nu­
merator on the right of (3.3-5). Using the two relations in (3.3-4), we 
have 

maximum 
conjugate-mismatch­

loss ratio of source 
and actual load 

and 

minimum 
conjugate-mismatch­
loss ratio of source 

and actual load 

(1.2 X 1.3- 1) 2 

1 + 
4X1.2X1.3 

1.05 

1 + (1.2-1.3) 2 

4 X 1.2 X 1.3 
1.0016 

The denominator on the right of (3.3-5) has a definite value that is inde­
pendent of the angle of the source's reflection coefficient. When r1 = 1, 
either of the formulas in (3.3-4) gives 

conj uyate-mismatch­
loss ratio of source 

and reflectionless load 

( 1.2- 1) 2 

1 + 
4 X 1.2 

1.0083 

Thus the power that the generator would deliver to a reflectionless load 
is somewhere between 1.05/1.0083 = 1.041 and 1.0016/1.0083 = 

( 1 - 0.0067) times the measured power, that is, between 4.1 percent 
above and 0.67 percent below the measured power. 
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Before we leave the subject of the losses that are associated with a single 
junction, let us briefly call attention to the special case in which the source is re­
flection less. When there is no reflection from the source, the wave incident on 
the load is always just the primary wave emitted by the source, and the maxi­
mum power transfer to the load occurs when the load also is nonreflecting. Any 
power that is reflected from the load represents a loss in load power with respect 
to the source's available power, so that in this special case the conjugate mis­
match loss is equal to the reflection loss, which we defined in Section 1.7, 
Chapter 1. 

reflection­
loss ratio 

(rz- 1)2 
1 + --:---

4rz 
conjugate-mismatch-loss ratio 
when source is nonreflecting 

(3.3-6) 

It is important to realize that the reflection loss and conjugate mismatch loss are 
the same only when the source is reflection less. When this is not the case, reflec­
tion loss has very little meaning, since in general maximum power transfer occurs 
when there is a reflection from the load. 

3.4 INSERTION LOSS AND ATTENUATION 

Now we turn to the rather confused subject of losses associcted with two­
ports. The confusion arises because there is not general agreement on the mean­
ings of the terms "insertion loss" and "attenuation." 

Insertion loss has its origins in low-frequency filter theory. It is usuallyt 
defined by 

insertion-loss ratio 

power delivered to load 
connected directly to source 

power delivered to load 
when two-port is inserted 

(3.4-1) 

A problem with insertion loss at microwave frequencies is that, unless the 
connecting hardware at port 1 is the same as that at port 2, the concept of inser­
tion loss is in principle meaningless because the source and load cannot be con­
nected directly. Perhaps we should also point out that the insertion loss is nega­
tive (ratio less than unity) when the two-port improves the power transfer 

between source and load. 

t But not always. "Insertion loss" is sometimes used with the meaning of "transducer loss" 
and sometimes with the meaning of "characteristic insertion loss,'' both of which are 
defined below. 
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Figure 3.4-1. 
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The difficulties with insertion loss are obviated in another two-port loss 
concept. Transducer loss, whose definition is universally agreed upon, compares 
the power delivered to the load when the two-port is inserted with the available 
power of the source. 

transducer- source's available power 
loss ratio power delivered to load when two-port is inserted 

(3.4-2) 

The transducer loss clearly cannot be negative (loss ratio less than unity), and the 
definition is valid regardless of the hardware at the ports. 

In general the insertion loss and the transducer loss depend in a complicated 
way on both the source and load as well as on the two-port itself. The formulas 
for these two losses, derivations of which the interested reader will find in 
Chapter 4, are 

(3.4-3) 

We call the reader's attention to the term SJ2S21 rsrz. This interaction term arises 
because of multiple reflections back and forth within the two-port. If either of 
the terminations is nonreflecting, or if the backward transmission s12 is zero, the 
interaction term is zero. Equations 3.4-3 and 3.4-4 differ only in the denomina­
tors within the second sets of parentheses. Comparison of these denominators 
reveals that 

transducer­
loss ratio 

insertion-
X 

loss ratio 
conjugate-mismatch-loss ratio 

of source and load 
(3.4-5) 
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A loss quantity that, unlike the insertion and transducer losses, is a proper­
ty of the two-port alone is the one that has usually been called attenuation t and 
more recently has had the name characteristic insertion loss given to it. 

attenuation ratio or 
characteristic-insertion­

loss ratio 

available power from 
reflectionless source 

power delivered to reflectionless 
load by reflectionless source with 
two-port inserted between them 

(3.4-6) 

Comparison with (3.4-2) reveals that attenuation is the same as transducer loss 
when the source and load are reflectionless. If the source and load are directly 
mate-able, and if the source and load ports have the same characteristic imped­
ance, the attenuation is also equal to the insertion loss when the source and load 
are reflectionless. 

attenuation or 
characteristic 
insertion loss 

transducer loss 

when rs = rz = 0 
insertion loss 
when rs = rz = 0 

(3.4-7) 

In contrast to the complicated formulas (3.4-3) and (3.4-4), the characteristic 
insertion loss depends in a very simple way upon quantities that are properties of 
the two-port alone. If we put rs = rz = 0 in either (3.4-3) or (3.4-4) we have 

attenuation ratio or 
characteristic-insertion­

loss ratio 

1 

~ 
(3.4-8) 

The reader might like to verify that (3.4-8) also follows from the definition 
(3.4-6) of the characteristic insertion loss and the definition (3.1-5) of the for­
ward transmission coefficient s21 . 

Notice that none of the losses we have defined thus far is a loss in the sense 
of dissipation. Each is a loss only in the sense of a comparison with some hypo­
thetical coupling of source and load. To say that the insertion loss of a compo­
nent of a microwave system is 3 dB does not mean that it dissipates half the 
power that is delivered to it. It means that when the component is put into the. 
system the power arriving at its load side is cut in half. This ambiguity in the 
meaning of the word "loss" gives rise to the apparent paradox that a lossless-

tThe trouble with the term "attenuation" is that it is used to designate almost any com­
parison of power levels. 
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that is, dissipationless-device can have a non-zero insertion loss (and it also 
proves that engineers are as prone as everybody else to using ambiguous 
terminology). 

The amount of power actually dissipated, usually as heat, within the two­
port is the difference between the input power and the power delivered to the 
load. We can if we like define a dissipation·loss ratio by 

dissipation-loss ratio 

power delivered 
to two-port 

power delivered 
to load 

(3.4-9) 

and we note that this is just the reciprocal of the familiar quantity efficiency. 
The reflection from the load influences the amount of power that is dissipated, 

so that the dissipation loss is a function of r 1 as well as the s-parameters: 

dissipation-loss 
ratio 

(3.4-10) 

It is possible to separate the transducer loss into a part that is due to mis­
match at the input junction and a part that is due to dissipation: 

transducer­
loss ratio 

cr:>njugate-m ismatch-loss dissipation-
X 

ratio at input junction loss ratio 
(3.4-11) 

This is merely a fairly obvious identity, and not a particularly useful one at that, 
because both the mismatch loss and the dissipation loss are in general involved 
functions. There is one case, however, in which it yields a simple and instructive 
relation. When f 5 = r 1 = 0, (3.4-11) becomes 

characteristic­
inserti on­

loss (attenuation) 
ratio 

reflection­
loss ratio 
at input 

Zc2 1 - lsu 1

2 

Zc1 ls21 1
2 

dissipation-loss 
ratio 

(f
5 

= r 1 = O) (3.4-12) 

3.4 INSERTION LOSS AND ATTENUATION 87 



This equation shows that the characteristic insertion loss is due to reflection or 
dissipation or both. It is important for the reader to bear in mind that the ex­
pressions given in (3.4-12) for the reflection- and dissipation-loss ratios are valid 
only when rs = rz = 0. 

Formulas, such as (3.4-3) and (3.4-4), that express the various loss quanti­
ties in terms of f 5 , r1, and the s-parameters of the two-port are usually of no use 
for computation. Apart from the fact that these formulas are extremely compli­
cated, we usually do not know the angles of the complex numbers that they de­
pend upon. As an example of the sort of computational use to which this sort of 
equation can be put, we shall discuss the mismatch error that arises in the inser­
tion measurement of attenuation (characteristic insertion loss) . 

A practical way to measure attenuation is to insert the unknown compo­
nent into a nominally matched system and record the decrease i'n transmitted 
power. Of course what this method actually measures is insertion loss, and when 
the result is taken as the attenuation there is an error that is due to the mismatch 
that inevitably exists. Comparison of equations 3.4-8 and 3.4-3 shows that 

characteristic­
insertion-loss 

(attenuation) ratio 
insertion-loss 

ratio 

I ( 1 - su rs) ( 1 - s22 rl) -SJ2S2t rsrzl 2 

11- rsrzl 2 (3.4-13) 

We can also express this ratio in terms of the input reflection coefficient f 1 that 
the device presents at port 1 or the output reflection coefficient f 2 that it pre­
sents at port 2: 

characteristic­
insertion-loss 

(attenuation) ratio 
insertion-loss 

ratio 

11-f1 f 5 12 11-s22 r 112 

11- rsrzl 2 
11-s11 f 5 12 11-r2 r 112 

11- rsrzl 2 

(3.4-14) 

The reflection coefficients r 1 and r 2 are measured with the respective opposite 
terminations in place (we shall go into the subject of input and output reflection 
coefficients in the next section). If we know the magnitudes but not the angles 
of the various complex quantities in (3.4-13) and (3.4-14) we can still calculate 
the I i m its of the mismatch error. t 

t Let us warn the reader that this problem is sometimes treated incorrectly in the literature. 
One can find discussions that ignore the fact that dissipation loss depends on the load, or 
assume erroneously that insertion loss is the sum of either dissipation loss or attenuation and 
a mismatch loss at each port. These mistakes have led to wrong answers in publications that 
have an obligation to be more reliable. 
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Example: What can we say about the attenuation (characteristic inser­
tion loss) of an attenuator if the measured insertion loss is 20 dB, the 
measuring system SWR is 1.05 in either direction, and the insertion SWR 
of the attenuator is 1.15 at each end? 

To begin with, let us note that considerable simplification of this 
problem results from the fact that 20 dB of attenuation between the 
ports are enough to swamp the interaction between the small mismatches 
at each end of the attenuator. Thus, as the reader can easily verify, the 
interaction term S12S21 rsrl in (3.4-13) is neg I igible COmpared With the 
rest of the numerator. We then have the approximation 

characteristic­
insertion-loss 

(attenuation) ratio 
insertion-loss 

ratio 

-
11 - Su rs 1

2 
11 - S22 rzl 2 

11-r5 r 112 (
neglecting ) 
interaction 

(3.4-15) 

The maximum value of (3.4-15) would occur if the quantities s 11 rs and 
s22 rz both had angles of 180 degrees and the quantity rsrz had an angle 
of 0 degrees: 

( 

characteristic- ) 
maximum insertion-loss 

value (attenuation) ratio = 
of insertion-loss 

ratio 

(1 + lsn llrs l) 
2 

(1 + ls22 llrzl) 2 

( 1-lrsllr11)
2 

The minimum value would occur if s11 rs and s22 rz had angles of 0 de­
grees and rsrz had an angle of 180 degrees: 

minimum ( ~;::~~~~i~~~- ) 
value (attenuation) ratio _ 

of insertion-loss 
ratio 

(1- lsu llr5 1) 2 (1- ls22 llrzl) 
2 

(1 + lr5 11r11) 2 

3.4 INSERTION LOSS AND ATTENUATION 89 



In the present case the numbers we need are 

1.15- 1 
ls11 I = ls22 1 = 

1
.
15 

+ 
1 

= 0.070 

and 

lr 1 = lr 1 = 1.o5 - 1 = o.024 
5 I 1.05 + 1 

and the maximum and minimum values of (3.4-15) are 

maximum 
value 

( 1 + 0.070 X 0.024) 2 
( 1 + 0.070 X 0.024) 

2 

( 1 - 0.024 X 0.024) 

( 1 + 0.00168) 4 

(1 - 0.000576) 2 

(we now make labor-saving use of the binomial theorem) 

='= 1 + 4 X 0.00168 + 2 X 0.000576 = 1 + 0.00787 

and 

minimum 
value 

( 1 - 0.070 X 0.024) 2 
( 1 - 0.070 X 0.024) 2 

(1 + 0.024 X 0.024) 

_ 1 - 4 X 0.00168 - 2 X 0.000576 = 1 - 0.00787 

Thus the true attenuation is between 0.79 percent above and 0.79 per­
cent below the measured insertion loss, or, in other words, mismatch 
causes an error of± 0.79 percent or± 0.034 dB. 

3.5 INPUT AND OUTPUT REFLECTION COEFFICIENTS 

We have seen that when port 2 has a nonreflecting termination the reflec­
tion coefficient that one sees when one looks into port 1 is s11 • The standing­
wave ratio corresponding to s11 is called the insertion SWR. 

insertion SWR at port 1 
1 + ls11 1 SWR at port 1 with 

(3.5-1) 
1 - ls11 1 nonreflecting load on port 2 

Likewise 

insertion SWR at port 2 
+ ls22 1 SWR at port 2 with 

(3.5-2) 
ls22l nonreflecting load on port 1 
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Example: A connector pair is found to have an insertion SWR of 1.1. 
What is its attenuation (characteristic insertion loss)? 

Connectors can normally be considered lossless (dissipation less), 
and two-ports in this category satisfy 

lsu I = ls22 I 

and 

ls12 1 = ls21 I = .J 1 - lsu 1
2 

if we assume that Zc 1 = Zc 2 • Therefore, for our connector pair, 

lsu I = ls22l = 
1·

1 
- 1 

= 0 0476 
1.1 + 1 . 

ls12 12 = ls21 12 = 1 - (0.0476) 2 = 1 - 0.00226 

and 

attenuation (dB) 101ogw = 101ogw 
ls21 1

2 1 - 0.00226 

= 10 log 10 ( 1 + 0.00226) = 0.0098 dB 

In the general case in which port 2 is not terminated in a reflectionless load 
but in a reflection coefficient rz*O, the reflection coefficient that one sees when 
one looks into port 1 is given by the very important formula 

(3.5-3) 

lll 
two- port 1--------i::t-1 --illoa d I 

COAX·HB-71 

Figure 3.5-1. The reflection coefficient rz of the load is transformed by the two­
port into a reflection Coefficient r 1 that is presented by port 1. 
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Most of the two-ports one is likely to have dealings with are reciprocal, and usu­
ally their ports have the same characteristic impedance. When these conditions 
are met, s12 = s21 and (3.5-3) becomes 

s;t I'z 
s11 + (reciprocal and Zc 1 1 - Szz I'z 

(3.5-4) 

Equations 3.5-3 and 3.5-4 show that I'1 consists of an intrinsic part s 11 and a part 
that is a transformation of I'z. When I'z = 0, I' 1 = su. 

Example: We saw in Section 3.2 that a transmission line segment of 
length l can be regarded as a two-port whose s 11 and s22 are zero and 

1 
- 20Q(d8/m)! 

whose s21 = s 12 = 10 4 -[31. Thus, according to (3.5-4), the 
reflection coefficient presented by the input end of the segment is 

where I'z is the r.eflection coefficient that terminates the segment at its 
load end (Figure 3.5-2). The reader should compare this relation with 

equation 1.8-10, Chapter 1. 

Figure 3.5-2. 

1-4----z--_,~ 
COAX-HB-73 

Example: A 3-dB attenuator has an insertion SWR that is specified to be 
less than 1.1, presumably at either port. What is the maximum SWR at 
its input if its output sees a SWR of 1.2?. 

At worst we have 

. 1.1 - 1 ls11 I = ls22 I = ---
1.1 + 1 

0.1 
2.1 

0.0476 
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Also 

lrl=1.2-1 
1 1.2 + 1 

and 

1 

0.2 
2.2 

0.091 

I 1
2 10

-10 x 3(ds) 
s21 0.50 

If the angles of s11 , s22 , s21 and rz are chosen so as to maximize lr1 1, 
equation 3.5-4 becomes 

0.048 + 0.50 X 0.091 
1 - 0.048 X 0.091 

0.50 X 0.091 
0.048 + 1 -- 0.0044 = 0.048 + 0.046 ( 1 + 0.0044) = 0.094 

and the maximum input SWR is therefore (1 + 0.094)/(1- 0.094)= 1.2. 
Notice that the term ls22 llrzl was too small to influence our result 
appreciably. 

Equation 3.5-3 has a very interesting property, one that is put to good use 
in many of the procedures for measuring the parameters of two-ports. Suppose 
we attach to port 2 a variable-length shorted stub, as shown in (a) of Figure 
3.5-3. Since the short is totally reflecting, the magnitude lrzl of the load reflec­
tion coefficient is unity. But the angle 8z of rz depends upon the adjustable 
length of I ine between the short and the terminal planet':!.. As we vary the length 
of the shorted stub through one half wavelength, the angle 8z will rotate through 
360 degrees, and rz will trace out a circle of unit radius on the complex r-plane, 
as shown in (b) of Figure 3.5-3. 

Now, the interesting property of equation 3.5-3 is this: as rz describes a 
circle on the complex r-plane, so will r 1. Since the rz-circle has a radius of 
unity, the r 1-circle will in general fall inside it (an exception occurs when the 
two-port is lossless, in which case the r 1-circle falls on top of the rz-circle). The 
rl-circle will not in general be centered about the origin of the r-plane, and 
points that are uniformly disposed about the rz-circle will not in general corre­
spond to uniformly disposed points on the rl-circle. 
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r,l Ill 
/~ L two- port 

:1 I 
s s s 5

22 
7 

II, 12, 21, variable -I ength 
shorted stub 

tl t2 

(a) 

90 deg 

Fz.- circle 

90 deg 

(b) COAX· HB-70 

Figure 3.5-3. As rz traces out a circle of unit radius on the complex 
r-plane, r 1 also traces out a circle. Points that are uniformly spaced 
around the rz-circle do not in general correspond to points that are 
uniformly spaced on the rl·circle. 
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The radius of the r 1-circle and the location of its center are determined by 
the two-port. The relations between the r 1 -circle and the s-parameters of the 
two-port are shown in Figure 3.5-4. The radius of the r 1-circle is given by 

R 
ls12 I ls21 I 

1 - ls22 1
2 (3.5-5) 

or, if reciprocity applies, 

R (reciprocity) 
1-ls22 1

2 
(3.5-6) 

COAX·HB-78 

Figure 3.5-4. The r 1 -circle is a function of the parameters of the 
two-port. The radius R is the reciprocal of the dissipative compo­
nent of the backward attenuation ratio, i.e., the attenuation ratio 
that applies when energy flows into port 2 and out of port 1. 
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This expression looks like the reciprocal of the dissipative factor in the for­
mula (3.4-12) for the characteristic-insertion-loss (attenuation) ratio, except that 
the subscripts 1 and 2 are turned around. Therefore 

R 
dissipation-loss ratio 

when rz = rs = 0 

dissipative factor in 
attenuation ratio when 
load is connected to 
port 1 and source is 
connected to port 2 

(3.5-7) 

When the two-port is not electrically symmetric, so that it matters which port we 
call #1 and which #2, it is important to keep in mind the seemingly paradoxical 
fact that, Whereas r 1 is measured With the load On port 2 and energy flowing in­
tO port 1, R is related to the dissipation loss that applies when the load is on port 
1 and energy flows into port 2. 

3.6 REFLECTIONS FROM DISCONTINUITIES 

By discontinuity we mean any interruption in the uniform structure of the 
transmission line. The one we have shown in Figure 3.6-1 is a little exaggerated, 
but the reader should be aware that bends, connectors, beads or posts supporting 
the inner conductor, probes, slots, tuning screws, and so forth are all discontinu­
ities and that they are all sources of reflected waves of greater or lesser 
magnitude. 

The fields in the discontinuity region are not, in general, principal-mode 
(TEM) fields.t While a small discontinuity, such as a probe, may give rise only 

tEverything we shall say here has relevance for hollow waveguide if we substitute "domi­
nant mode" for ~~principal mode" or "TEM mode!' 

COAX-HB-8 

Figure 3.6-1. A rather extreme example of what we call a discontinuity. 
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to a slight perturbation of the TEM-mode fields, a structure, such as a tee, that 
totally destroys the uniformity and symmetry of the I ine can be expected to dis­
tort the I ines of force to such an extent that they bear I ittle resemblance to the 
TEM-mode fields in the uniform line. These field perturbations are not neces­
sarily confined to the limits of the discontinuity region. Although non-TEM 
modes are nonpropagating-we assume that the frequency is below the lowest 
higher-mode cutoff-the non-TEM-mode fields may penetrate some distance in­
to the uniform line before they are effectively attenuated. 

Let us look at a few practical coaxial-line discontinuity structures. The 
simplest discontinuity one can talk about is a transverse conducting plane that 
terminates the line, shown in Figure 3.6-2. To the extent that the plane is per­
fectly conducting, it is an electrical mirror. At the conducting surface the inci­
dent wave experiences a total reflection, in which the electric field (voltage) 
reverses direction bur the magnetic field (current) does not. The transverse con­
ducting surface is therefore electrically equivalent to an ideal short circuit whose 
location coincides with that of the surface. The short-circuiting plane is almost 
exceptional among discontinuities in that it does not generate any non-TEM­
mode fields. The only fields present belong to the incident and reflected TEM 
waves. 

actual line terminated by 
transverse conducting 
plane 

equivalent ideal line 
terminated in ideal 
short circuit 

COAX·HB·l4 

Figure 3.6-2. A perfectly conducting transverse surface that terminates the line 
looks electrically like an ideal short circuit. 
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Next let us consider a line whose end is simply left open. We might naively 
expect by analogy with the previous example that such a termination would look 
like an ideal open circuit, but it does not. There are two reasons for this. The 
first is the fringing of the fields shown in Figure 3.6-3, because of which the 
shunt capacitance c per unit length of line increases toward the end while the 
series inductance l per unit length decreases (at the very end c is twice and l one 
half the respective values given in Section 1.5 for an unterminated line). Since 
the impedance (Z = VII, not Zcl near an open end is high, it is primarily the in­
crease in capacitance rather than the decrease in inductance that governs the 
electrical behavior of the open end, and the excess shunt capacitance in the ter­
minal region can be treated as though it were a lumped capacitor connected to 
the end of the line. 

electric I ine of force 

magnetic line of force out of paper 
•
o } { into} 

COAX-HB-68 

Figure 3.6-3. Fringing of the field at the open end of a coaxial line. 

The other difference between the actual open end and the ideal open cir­
cuit is due to radiation, which results in a loss of power from the wave incident 
on the termination. This loss introduces an equivalent radiation conductance in 
parallel with the equivalent terminating capacitance. 

Two practical shielded open-circuit terminations are shown in Figure 3.6-5. 
As long as the gap between the center conductor and the end surface in (a) is 
very much smaller than the wavelength, the equivalent lumped capacitance is 
constant with frequency. Usually what one would like to have is not a constant 
capacitance but an equivalent ideal open stub of constant electrical length. By 
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. I 

~ 
I 

actual line with 
open end 

equivalent ideal line 
terminated by 
capacitive admittance 

COAX-HB-18 

Figure 3.6-4. The effect of fringing fields and radiation at the open end can be 
accounted for by assuming that the line is ideal but that it is terminated in a 
capacitive admittance. 

( a} 

l 
T 

I 
( b} 

COAX-HB-67 

Figure 3.6-5. (a) The shielded open-circuited termination is electrically equiva­
lent to a terminating capacitance that, within limit, does not vary with frequen­
cy. (b) A properly proportioned diameter increase at the end of the center 
conductor makes the termination closely equivalent to an ideal open stub of 
constant electrical length. 
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means of an appropriately proportioned diameter increase at the end of the cen­
ter conductor, as shown in (b) of Figure 3.6-5, the equivalent lumped capacitance 
can be made to vary with frequency in such a way that the termination looks 

like an open stub of fixed electrical length. 
Let us look at some two-port discontinuity structures. In an air-dielectric 

coaxial line something has to support the center conductor, and this job is usu­
ally done by dielectric beads. A bead and its equivalent circuit are shown in Fig­
ure 3.6-6 (a). Provided the frequency is low enough that no higher modes can 
propagate even in the bead, the bead is simply a short section of dielectric-filled 
line, whose capacitance per unit length is higher than that of the empty line and 

(a) 

--~inner-zzazzozzz;zzaa, conductor 
groove 

outer-
7/TP/~ conductor 

groove 

~) 
(b) 

1-fquivalent T shunt 
capacitor 

--.J electrical j..­
[ length [ 

equivalent 
~series 

f inductor 

------~~~------

COAX-HB-6 

Figure 3.6-6. (a) Dielectric bead supporting the center conductor is equivalent 
to a section of line that is a little longer than the bead itself, shunted by a 
capacitor. (b) A groove in the inner or outer conductor is approximately equiva­
lent to a series inductor. 
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whose characteristic impedance is therefore lower. If the faces of the bead are 
planes normal to the line's axis, and if the diameters of the inner and outer con­
ductors remain constant, there are no fringing fields in the empty line adjacent 
to the bead. A precise equivalent circuit of the dielectric bead is a section of 
ideal line that is a little longer than the bead itself, shunted by a capacitor. The 
additional electrical length accounts for the fact that TEM waves travel more 
slowly in the bead than they do in the empty line. The capacitor accounts for 
the bead's excess capacitance. 

Part {b) of Figure 3.6-6 shows grooves cut in the inner or outer conductor 
of the line. The predominant effect of either of these discontinuities is to create 
an additional amount of magnetic field, so that either one is approximately 
equivalent to a series inductor. 

The step in the inner conductor OD in Figure 3.6-7 {a) is the boundary 
between two different chara6teristic impedances; the characteristic impedance to 
the right of the step is less than that to the left because the ratio b!a is Jess on the 
right. In addition to the change in characteristic impedance, the step causes 
fringing of the fields, predominantly the electric field, the effect of which is ap­
proximated by an equivalent shunt capacitor. 

In Figure 3.6-7 {b) the inner conductor OD and the outer conductor I D 
both jump simultaneously. If the ratio b!a is the same on either side of the step, 
the characteristic impedance will not change, but the fringing will still introduce 
an equivalent shunt capacitance at the discontinuity. 

~ 
'77177t77777777777?77 

(a) 

~7%1%7777% 77%1 

~%777777777777 

(b) 

I 
I 

COAX·HB-10 

Figure 3.6-7. Steps in conductor diameters cause fringing that can be approxi­

mately accounted for by equivalent shunt capacitors. 
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A discontinuity is a two-port (or a one-port). and everything we have said 
in the preceding sections of this chapter about two-ports and theirs-parameters 
and about losses applies to discontinuities as to other two-ports. In particular, 
since all the structures we think of as discontinuities are reciprocal, and virtually 
all of them may for most purposes be regarded as lossless (dissipationless), their 
s-parameters practically always satisfy equations 3.2-5 through 3.2-8, which we 
recapitulate here: 

(reciprocity) (3.6-1) 

c 
(3.6-2) 0 

·.;::; 
ls11 1 = ls22 1 

ro 
0. 

:~ (3.6-3) 
-o 
2 (3.6-4) Q) 

.!::!. 
arg s12 + arg s21 = arg s11 + arg s22 ± 1, 3, 5, . . . X 180 deg 

The first of the zero-dissipation relations· (3.6-2) shows that a dissipation­
less discontinuity has the same insertion SWR in either direction whether it is 
symmetric or not. 

insertion SWR 

at port 1 

1 + ls11 I 
ls11 I 

1 + ls22 I 

ls22 1 
insertion SWR 

(zero dissipation) 
at port 2 

(3.6-5) 

The second zero-dissipation relation (3.6-3) shows that we can calculate the at­
tenuation (characteristic insertion loss) of any dissipationless structure if we 
know its insertion SWR. 

characteristic­
insertion-loss 

(attenuation) ratio 

(rinsertion + 1 ) 
2 

4rinsertion 

(zero dissipation) 

where we have written r;nsertion for the insertion SWR. 

(3.6-6) 

It frequently happens that a measured ref.lection coefficient is due not only 
to the reflection one would like to measure but also to one or more interfering 
reflections that one is not interested in but yet cannot eliminate from the meas­
uring situation. Sorting out all the contributions to a measured reflection coeffi-
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cient would at the very least coh.front us with a complicated calculation, and, 
more often than not, such a calculation would not be possible at all because we 
would not have enough information about the phases of the component 
reflections. · 

Figure 3.6-8 shows schemat,iGally a measuring arrangement that can some­
times be used to separate the reflection due to a termination from that due to an 
intervening discontinuity. The reflection coefficient that we see when we look 

through the discontinuity toward the load is rinput and the corresponding 
standing-wave ratio is rinput· The reflection coefficient and SWR of the termina­

tion are rterm and Tterm' and the insertion SWR of the discontinuity is 

rinsertion 
+ su 

su 
(3.6-7) 

As the length of the variable-length line section changes, rinput moves in a 
circular locus on the reflection-coefficient plane, making one complete circle for 
a half-wavelength change in line length. The circle will not in general be centered 
at the origin of the r-plane. Whether or not the circle encloses the origin depends 

on the relative size of ls11 I and I rterm I. When I rterm I> ls11 I, the r term·circle 
encloses the origin of the r-plane; when lrterm I< ls11 I, it does not. 

At some point on the rinput·circle, lrinputl is maximum; and at the dia­
metrically opposite point, lrinputl is minimum. If the s-parameters of the dis­
continuity satisfy the conditions (3.6-1) through (3.6-4) for a lossless, reciprocal 

r mpul - l.r;erml-

- 'ierm-
dissipationless 
discontinuity / 
s s s s / 

termination 
II' 12t 21' 22 

r inserlion variable 
electrical 

length 

COAX-HB-69 

Figure 3.6-8. A variable-length line section between the termination and the 
discontinuity makes possible the separation of the reflection due to the termina­
tion from that due to the discontinuity. 
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two-port, it can be shown that equation 3.5-3 gives the following formul~ for 
the maximum and minimum values of the input reflection coefficient. 

ls11 I + If term I 

1 + ls 11 11rterm I 

lrterm I - ls 11 I 

1-ls11 11rterml 

ls 11 1- lrterm I 

1- ls 11 11rterm I 

(3.6-8) 

(If term I> ls 11 I) 

(3.6-9) 

( lrterm I< ls 11 I) 

If we write these formulas in terms of standing-wave ratios, they become exceed­
ingly simple: 

(3.6-10) 

rinsertion 
(rinsertion > 'term) 

'term 

(3.6-11) 

(rinsertion < T term) 
'insertion 

In the practical applications of this method, one varies the length of the 

I ine and measures (rinput) max and (rinput) min· Both 'insertion and 'term can then 
be calculated from the measured quantities by the simultaneous solution of 
(3.6-1 0) and (3.6-11 ). 
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CHAPTER 4 

Some Theoretical Background 

In this chapter we provide, for those readers who wish it, a little of the 
theory that underlies material that is presented without much justification else­
where in the book. We shall confine ourselves to just two topics. The first four 
sections of the chapter give an account of the theory of distributed parameter 
transmission lines, and the last two sections provide an introduction to flow 
graphs and their application to microwave systems. Readers who are not con­
cerned with theory and who are willing to take on faith sGme of the formulas 
quoted elsewhere in the book are invited to omit this chapter. 

4.1 TRAVELING WAVES ON DISTRIBUTED PARAMETER LINES 

In our brief discussion of the distributed circuit model in Section 1.5 we 
described how the line is represented by a circuit having one-dimensional physi­
cal extension along the length of the line and containing linearly distributed 
series inductance and resistance and shunt capacitance and conductance. If we 

l dx r dx 
--- - --..r"''Y"'.r"''.rY"1f"----'INV----1~------- ---

c dx ;:~ q dx 

---- ------------+----------

~-------dx--------~ 

COAX·HB·56 

Figure 4.1-1. An infinitessimal length dx of line in the distributed parameter 
model. 

4.1 TRAVELING WAVES ON DISTRIBUTED PARAMETER LINES 105 



write z for the series impedance per unit length andy for the shunt admittance 
per unit length, then 

z = r + jwl 

and 

y = g + jwc 

(4.1-1) 

(4.1-2) 

where r, l, g, and c are respectively the series resistance, series inductance, shunt 
conductance, and shunt capacitance, all per unit length of line. 

Let w be the variable of position along the line's axis, increasing from 
right to left as shown in Figure 4.1-2. If V(w) and J(w) are the voltage and cur­
rent in the line at w, defined as in Figure 4.1-2, then their rates of change with 

position will be given by 

dV(w) 
= zJ(w) 

dw 

and 

di(w) 
dw = yV(w) 

(4.1-3) 

(4.1-4) 

Elimination of J(w) between (4.1-3) and (4.1-4) leads to a second-order differen­
tial equation in V(w), 

d2 V(w) - 'l V(w) = 0 
dT 
where 

'Y = +JZy 

I 
I(w+dw) 

--- - t~ ... ~-----"wz-:w 
V(w+dw) 

~ 

(4.1-5) 

(4.1-6) 

I 
I(w) 

fydw :F ---
- -- - -----------.&......-...,.----~ -- -- --

w~--~----------------+---

w+dw w COAX-HB-52 

Figure 4.1-2. 
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is called the propagation constant The real part of r is the attenuation cortstant 
a and the imaginary part is the phase constant {3. 

'Y = a + j{3 (4.1-7) 

When we substitute (4.1-1) for z and (4.1-2) for yin (4.1-6) we get 

r J (r + jwl) (g + jwc) = wJlc · j(j + .!_
1
) (j + ...L) 

w we 
(4.1-8) 

The lines we are interested in are not too lossy, so we shall regard r/wl and g/wc 
as small quantities. Let us expand (4.1-8) in powers of r/wland glwc: 

r = wJTC [j + ~ (~1 + ~c) + · · · · ] (4.1-9) 

The largest imaginary terms that are neglected in (4.1-9) are of the second order 
in small quantities and the largest real terms are of the third order. 

The imaginary part of (4.1-9) is the phase constant and the real part is the 
attenuation constant. Retaining only the leading terms, we have 

(4.1-10) 

and 

a~ ~{r£ +gJC) 
2 \ 1 c 

(4.1-11) 

Our assumption about the smallness of r/wl andg/wc, specifically that they are 
both much less than unity, is equivalent to saying that a<<{3 or,in other words, 
that the attenuation constant is much less than 2n nepers (or about 55 dB) per 
wavelength. While this condition is bound to be met in any line that is used for 
transmission at high frequencies, it will cease to obtain at sufficiently low fre­
quencies no matter how lossless, within practical limits, the line may be. 

Equation 4.1-5 is a homogeneous differential equation with constant coef­
ficients, which governs the behavior of V as a function of position w. The con­
stancy of the coefficients is due to the fact that the line is uniform; if it were not, 
r would be a function of w. Homogeneity, which means that there are no terms 

that do not involve the dependent variable V, reflects the fact that there are no 
energy sources in the part of the line to which (4.1-5) applies. If there were such 
sources, for example if we were talking about a traveling-wave device with cou­
pling between an electron beam and the transmission line, there would be a driv­
ing function on the right-hand side of (4.1-5). 
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The two independent solutions that we know (4.1-5) must have are e+'Yw 

and e-'Yw. The complete solution is a linear combination of these functions, and 
accordingly we write 

(4.1-12) 

where V+(O) and v-(0) are arbitrary constants to be determined from the bound­
ary conditions. 

The two parts of V, V+(O) e+'Yw and V-(0) e-'Yw, represent respectively a 

rightgoing (toward -w) and a leftgoing (toward +w) wave: We can understand 
why this is so as follows. Our V's and I's are phasors- time-independent com­
plex quantities that represent sinusoidally time-varying voltages and currents. It 
is conventional witA electrical engineers, although not with physicists, to write 
the time dependence of sinusoidal functions with a positive imaginary exponent 
thus: 

v(t) = real part ( Vejwt) = lVI cos (wt + arg V) (4.1-13) 

The angle of the complex number V is the phase of the sinusoidal voltage v(t). 

Thus the distribution of instantaneous voltage v(w,t) on the line corresponding 
to the phasor function V+(O) e+'YW is 

v(w,t) = IV+(O) leo:w cos ({3w + wt + argV+(O)) (4.1-14) 

At any instant of time this is a sinusoidal function of w that is attenuated expo­
nentially toward the right (toward -w). As time progresses, the exponential en­
velope remains fixed while the oscillating cosine moves to the right inside it with 
a phase velocity given by 

phase velocity = e~w)argument of = ~ 
cosine remains 
constant 

(4.1-15) 

Let us write V+(w) and V-(w) for the rightgoing and leftgoing parts of the 
expression (4.1-12) for V(w). Thus 

where (4.1-16) 
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We can calculate the current in the I ine with the help of (4.1-3) and ( 4.1-6). 

I(w) = 2._ dV(w) = ff (V+(O)e'YW- V-(O)e-'Yw) 
z dw ..j z 

(4.1-17) 

The factor J y;z is the characteristic admittance Yc of the line and its reciprocal 
is the characteristic impedance. 

Y=-1 = ff" 
c zc ..J z (4.1-18) 

We recognize the two parts of the right-hand side of (4.1-17) as rightgoing and 
leftgoing waves, and hence we write, in conformity with the notation we have 
already adopted for the two parts of V(w), 

where (4.1-19) 

4.2 LOSSLESS COAXIAL LINE 

If the radii of the inner and outer conducting surfaces of the coaxial line 
are a and b respectively, and if there is an amount of charge x per unit length of 
line uniformly distributed over the inner conductor, we can write down from 
Gauss' law that the magnitude E(r) of the electric field at any radius r between 
the conductors is 

X 
E(r) = 2tre 

T 

The energy WE per unit length of line associated with the electric field is 

121f Jb e 2 x2 
WE = - E (r) r dr d8 = -

2 4rre 
0 a 

and the capacitance per unit length is 

c _£__ = 2rre 

2WE log ~ 
ea 

b 
log -

e a 

(4.2-1) 

(4.2-2) 

(4.2-3) 
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If the current in the inner conductor is i, Ampere's line-integral formula 
gives for the magnitude H(r) of the magnetic field at any radius r between the 

conductors 

i 
H(r) = 27T. r 

The energy per unit length of line associated with the magnetic field is 

11 2 111 121T ib ·2 

WH = 2 a H (r) r dr d(J = 41T 

and the external inductance per unit length le is 

11 b 
-log -
27T e a 

(4.2-4) 

(4.2-5) 

(4.2-6) 

The external inductance le is that associated with magnetic flux in the dielectric 
between the conductors as opposed to an internal inductance li, which we shall 
consider in the next section, that arises owing to the flux that penetrates below 
the surfaces of imperfect conductors. Note that the constant 11 in (4.2-6) is the 
permeability of the dielectric, and hence is equal to 11(vac). 

The reader might well ask what candle can possibly have to do with prop­
agation of waves on the line at high frequencies, since they are de values of ca­

pacitance and inductance, and surely the fields at 9 GHz do not look like de fields. 
But in fact the fields at 9 GHz do look like de fields, and this is because we are 
talking about TEM waves. 

It is possible to show in a very elegant mannert that, in any axially uniform 
metallic guiding system, Maxwell's equations separate so as to yield ordinary dif­
ferential equations in the axial direction that are identical with the distributed­
parameter transmission-line equations (4.1-3) and (4.1-4). It is this remarkable 
fact that justifies the use of the distributed parameter model to represent wave 
propagation in any transmission line or waveguide. The field-theory solution to 
the problem also shows that in the case of the TEM mode: 1) the fields always 
have the same form as the de fields, 2) the quantities that appear as "voltage" 
and "current" in the field equations can be identified with the ordinary voltage 
and current in the line, and 3) the distributed series impedance and shunt admit­
tance that appear in the field equations are just the quantities that we arrive at 

tThe interested reader is referred to N. Marcuvitz (ed), "Waveguide Handbook," Vol. 10, 
MIT Radiation Laboratory Series, McGraw-Hill Book Co., New York, 1951, p 1 ff. 
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by assuming a distributed inductance given by (4.2-6) and capacitance given by 
(4.2-3). Thus the distributed parameter model of the line, with values of induct­
ance and capacitance that are calculated on the assumption that the fields are 
static, is an accurate description of TEM wave propagation on any lossless trans­
mission line at frequencies up to those at which higher modes begin to propagate. 

Having, we hope, assured the reader that our unsophisticated treatment of 
transmission-line propagation is legitimate, we shall conclude this section by cal­
culating the propagation constant and characteristic impedance of a lossless 
coaxial line. 

If we put z = jwleandy = jwc in (4.1-6) and (4.1-18) we get, respectively, 

'Y = j{3 = jwJT;C 

and 

z = c 
;r; 

c 

(4.2-7) 

(4.2-8) 

Now making use of the forumlas we have just calculated for candle, (4.2-3) and 
(4.2-6), we have 

(3 = wffe (4.2-9) 

or, in view of (4.1-15), 

phase velocity (4.2-10) 

and 

1 ~ b - -log -
21T E e a 

(4.2-11) 

Bear in mind that J.l and E in these formulas are the permeability and permittivity 
of the dielectric. 

4.3 COAXIAL LINES WITH SMALL LOSSES 

We pointed out in Chapter 1 that the fields in a lossy line are not strictly 
TEM. Nevertheless, if the losses are small we are justified in assuming that the 
fields are virtually the same as they would be in a lossless line and hence that we 
may continue to use our distributed parameter model to represent the line. 
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When the I ine is lossless, the only contribution to the variation of volt?ge 
with distance is the changing magnetic flux in the space between the conductors, 
and, as we saw in the preceding section, this leads to an inductive component 
jwle of z. Conductor loss causes the electric field to have a small tangential com­
ponent at the conducting surfaces. This tangential field component gives rise to 
an additional contribution to dV/dw which we account for in the model by add­
ing a small impedance in series with le. 

We shall assume that it is possible to define a surface impedance Z
5 

as the 
ratio of the tangential component Etan of the electric field at the surface of the 
metal to the surface current density K (amperes/meter). 

Etan 
Z =R +j"X =--s s s K 

The surface impedance of an ideal, plane-conducting surface is given by t 

zs = (1 + j) ff 

(4.3-1) 

(4.3-2) 

where J1 is equal to J1(vac) for a nonferromagnetic conductor and a is the con­
ductivity in ohms- 1 /meter. An interesting aspect of (4.3-2) is that the resistive 
and reactive components of Z

5 
are equal. 

The case of a real conductor is complicated by the degree of compactness 
and the surface finish. The irregularities of a rough or porous surface may well 
extend to depths on the order of, or even much greater than, the skin depth. 
Then not only is the surface impedance much greater than the ideal value given 
by (4.3-2), but it is also no longer accurate to assume that the real and imaginary 
parts of Z

5 
are equal. It has nevertheless become customary to talk about surface 

impedance in terms of "effective conductivities" as though (4.3-2) applied rigor­

ously. Accordingly, let us define aeff, R and aeff, x so that the real and imaginary 
parts of Z

5 
are given by 

R =j~ 
s 2aeff, R 

(4.3-3) 

and 

Xs = J2~; X 
(4.3-4) 

tsee for example Ramo and Whinnery, "Fields and Waves in Modern Radio," (second 
edition), John Wiley and Sons, New York, 1953, p 239. 
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I At frequencies high enough that the skin depth is very much smaller than 
che radius of the inner conductor, the series resistance per unit length rand the 
additional series reactance per unit length w1i due to the surface impedance of 
the conductors are given by 

T = !¥ (2naJ ae; R (inner cond) + 2nbJ aeff, R (outer cond) 

and 

w1. = /Wil( 1 + 1 ) 
1 V 2 2naJ a eff, X (inner con d) 2nbJ a eff, X (outer cond) 

(4.3-5) 

(4.3-6) 

The component 1i of the inductance per unit length is called internal inductance 
because it is due to magnetic flux within the interior of the conductors. 

The conductor-loss component of the 
first term on the right of (4. 1-11): 

1/c 
a(cond) = 2' ..j r 

line's attenuation is given by the 

(4.3-7) 

Since a itself is a small quantity we may ignore the contribution of 1i to 1 and 
write 

1 
a(cond) = 2 rYc(lossless) (4.3-8) 

The inductance 1i causes a small increase in the phase constant (decrease in 
the velocity of propagation). If we put 1 = 1e + li into (4.1-1 0) we have 

or 

6{3 (due to conductors) 

~ (lossless I in e) 

(4.3-9) 

(4.3-10) 

We are justified in ignoring the effect of ron~. Referring to equation 4.1-9, we 
see that the largest imaginary terms involving r are of the second order in small 
quantities, whereas the correction we have just calculated is of the first order. 

Both rand 1i affect the characteristic impedance significantly. If we ignore 
dielectric loss for the moment we have 

(4.3-11) 
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or 

l::.Zc ( cond) 
Zc (I ossless) 

(4.3-12) 

The foregoing theory of conductor loss finds practical application in the 
case of precision air-dielectric I ines whose conductors have been fabricated so as 
to have smooth, compact surfaces. For such conducting surfaces one can assume 

that a eff, R = a eff, x and hence that r = wl;. In this circumstance 

a(cond) 
~(lossless) 

M(cond) 
~(lossless) 

{l::.Zc(cond)\ 
real part \Zc (lossless1 

. . (Mc(cond~ 
- lmagmary part Zc(losslessy 

The shunt admittance per unit length of a lossless line is 

27T€ 
y(lossless) = jwe = jw 

b 
log -ea 

(4.3-13) 

(4.3-14) 

The shunt admittance of a line with a lossy dielectric is found by substituting the 
complex permittivity € '-je "= €( 1-j tan o), where o is the loss angle, in place of 
€ in (4.3-14). Thus 

. 21TE ( 1 -j tan o) 
y(lossy) = JW b = jwe + we tano 

loge a 
(4.3-15) 

so that the shunt conductance due to dielectric loss is 

g = we tan o (4.3-16) 

The contribution that g makes to the line's attenuation is found by putting 
(4.3-16) into the second term on the right of (4.1-11): 

a(diel) = ]_we tan o · /C = ]_~tan o (4.3-17) 
2 J-;; 2 

The influence of dielectric loss on the phase constant can be ignored. Even 
theoretically, g, like r, causes a change in~ that is of the second order in small 
quantities. But even if g were large, its effect on~ would be swamped by the un­
certainty in the dielectric constant. 
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Under some circumstances, though, dielectric loss might have a significant 
effect on the characteristic impedance, since it gives rise to an imaginary compo­
nent. Ignoring conductor loss, we have 

Z = fZ = ~ = Z (lossless) · (1 +i L) 
c ..j y J jWc+g c 2 we 

or 

l:.Zc(diel) 
Zc(lossless) 

j tan 5 
2 

4.4 THE TERMINATED LINE 

(4.3-18) 

(4.3-19) 

Let us return to the general expressions (4.1-16) and (4.1-19) for the volt­
age and current on the line: 

where (4.4-1) 

and 

where (4.4-2) 

Mathematically, various sets of boundary conditions might be used to de­
termine the two constants v•(o) and V-(0) in (4.4-1) and (4.4-2). As a matter 
of fact, though, we do not wish to make a unique determination of v•(o) and 
V-(0). For the present we are interested in the effect of terminating the line at 
its right-hand end in a load of known impedance or reflection coefficient, and 
this condition imposes a constraint on (4.4-1) and (4.4-2) that is sufficient only 
to fix the ratio of v•(o) and V-(0). This partial determination of the solution to 

the problem will enable us to calculate impedances and reflection coefficients, 
but not the actual values of voltages and currents. To find these we would have 
to specify another boundary condition, for example the voltage at the load or at 
the generator. 
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~ to 
generator 

I(w)=I+ (w) ti-(w) 

\ + -
V(w) = V (w)rV(w) 

) 

reference 
plane w 

Figure 4.4-1. 

w=o 

I 
termma I 
plane t 
COAX-HB-53 

Let the load's terminal plane t be at w = 0. We can write (4.4-1) and 
(4.4-2) in the form 

(4.4-3) 

(4.4-4) 

where 

(4.4-5) 

is the reflection coefficient of the load. Equations (4.4-3) and (4.4-4) emphasize 
the role of the forward and reflected waves in making up the total voltage and 
current on the I ine. 

If we solve (4.4-1) and (4.4-2) for v•(w) and V-(w) in terms of V(w) and 
I(w), obtaining 

1 2 [V(w) + Zci(w)] (4.4-6) 

and 

1 
2 [V(w)- Zci(w)] (4.4-7) 
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and then use these expressions, evaluated at w = 0, to eliminate V+(O) and V-(0) 
from (4.4-1) and (4.4-2), we get 

V(w) = V(O) cosh')'w + Zci(O) sinh')'w (4.4-8) 

l(w) = /(0) cosh')'w + Yc V(O) sinh')'w (4.4-9) 

Equations (4.4-8) and (4.4-9) put in prominence the 2-port-network aspect of a 
length of line, since they may be thought of as relations between the voltage and 
current at an input port and the voltage and current at an output port. 

The reflection coefficient f(w) at the reference plane w is defined by 

r(w) (4.4-1 0) 

and the impedance Z(w) is defined by 

Z(w) 
V(w) 

I(w) 
(4.4-11) 

Impedance and reflection coefficient are mathematically equivalent. If we com­
bine the definitions (4.4-1 O) and (4.4-11) with either (4.4-1) and (4.4-2) or 
(4.4-6) and (4.4-7), we get 

f(w) 

Z(w) _
1 

Zc 
Z(w) 1 , 
---+ 

Zc 

Z(w) 1 + r(w) 
1-r(w) 

(4.4-12) 

Readers who are acquainted with the theory of conformal mapping will recog­
nize (4.4-12) as a bilinear transformation which maps the right-hand half of the 
Z-plane into the interior of the unit circle about the origin of the r-plane. 

From (4.4-1) we have 

V-(O)e-'YW 

V+(O)e+'Yw 

so that the relation between the reflection coefficient r(w) at any plane wand 
that at the terminal plane w = 0 is 

r(w) = r(O)e- 2 '~'w (4.4-13) 
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The relation between the impedance Z(w) at wand that at w = 0 can be obtained 
by dividing (4.4-8) by (4.4-9). We get 

Z(O) 
--+tanh rw 

Z( w) = _z_c____,--,---­
Z(O) 

1 + -- tanhrw 
Zc 

(4.4-14) 

The voltage and current relations (4.4-8) and (4.4-9) and the impedance 
relation (4.4-14) are really quite com pi icated because the arguments of the hy­
perbolic functions are complex. We can obtain simpler expressions that are valid 

when the attenuation is small. Making use of well known identities, we have 

cosh rw = cosh (ex+ j{3)w = cosh exw cos {3w + j sinh exw sin (4.4-15) 

and 

sinh rw = sinh (ex+ j{3)w = sinh exw cos {3w + j cosh exw sin {3w (4.4-16) 

If ex is small enough that (exw) 2 is negligible compared with exw, we can make the 
approximations cosh exw = 1 and sinh exw = exw. When we do so, (4.4-8) and 
(4.4-9) become 

V(w) = (V(O) + ZJ(O)exw) cos {3w + j{Zci(O) + V(O)exw) sin {3w 

I(w) = (I(O) + Yc V(O)exw) cos {3w + j (Yc V(O) + I(O)exw) sin {3w 

and (4.4-14) becomes 

Z(w) 

Zc 

Z(O) ) . ( Z(O) ) -- + exw + 1 1 + -- exw tan {3w 
Zc Zc 

( 
Z(O) ) . (Z(O) ) 1 + Zc exw + 1 "Z;- + exw tan {3w 

(4.4-17) 

(4.4-18) 

(4.4-19) 

The standing-wave pattern on the line is most appropriately expressed in 
terms of the reflection coefficient r(w) = Jnw) JejO(wJ. Making use of the ex­
pressions (4.4-3) and (4.4-4) for the voltage and current, and writing * to denote 
a complex conjugate, we have 

IV(w) I = .Jv(w) V*(w) 

IV+(O) I .J eiaw + lr(O)i2 e-iaw + 21r(O) I cos (2{3w- 8(0)) (4.4-20) 
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and 

IJ(w) I = y'J(w)J*(w) 

Apart from the factor I Yc I in (4.4-21), the expressions for I VI and II I differ only 
in the sign of the cosine term. We leave it as an exercise for the reader to demon­
strate the perhaps surprising fact that successive standing-wave maxima and 
minima are not a half wavelength apart when a -=1= 0. 

The power flowing in the line toward the load is 

1 
P = 2 real part (VI*) (4.4-22) 

(* denotes complex conjugate). In terms of forward and reflected waves, 
(4.4-22) becomes 

p 1 
1 t [ ( v• + v-) yc* ( v•* - v-*)] 2 rea par (4.4-23) 

and, if Yc is real, 

(4.4-24) 

In this expression,~ Yc I v•J2 and~ Yc I v-1 2 are clearly the amounts of power 

in the forward and reflected waves respectively, and the net forward power is the 
difference between them. 

When the characteristic immittance is not purely real it is not possible to 
separate the power flow into a forward part that is proportional to 1v•l2 and a 
reflected part proportional to I v-1 2

• We leave it to the reader to show that, with 
a given forward voltage, the power delivered to the load will be maximum when 
the load immittance is equal to the complex conjugate of the characteristic im­
mittance. Thus when the characteristic immittance is not real, maximum power 
is not delivered to a nonreflecting load. 
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4.5 APPLICATION OF SIGNAL FLOW GRAPHS TO MICROWAVE CIRCUITS'~' 

Figure 4.5-1 shows a two-port with a current and a voltagE: so defined at 
each port that Y, real part {V111 *) and Y, real part {V2 12 *) are the 
amounts of power flowing into ports 1 and 2 respectively. The characteristic im­
pedances of the lines in which ports 1 and 2 are located are Zc 1 and Zc 2 • The 
ingoing and outgoing voltages at each port are given in terms of the correspond­
ing Vandlby 

vt 2 
1 

{V1,2 + zc1,211,2) -2 {4.5-1) 

v~,2 
1 

{V, ,2 - Zc1 ,2 I, ,2l -2 {4.5-2) 

and the scattering matrix of the two-port is defined by 

{4.5-3) 

We gave a simplified introduction to the scattering matrix in Chapter 3, and we 
shall not elaborate on that here. The reader will find a discussion of s-matrix 
theory in any text on microwave circuits. 

I ,~, 1-, 2. 

Figure 4.5-1. ~I 
i \ I i I~+ I two-port I I 

~ I I I I ~ I I I I 

" I I I I "' \ , 
_/ ,_/ 

COAX·HB·51 

Example: The scattering matrix of a length 1 of transmission line is 

s .. 
transm tsSIOn {4.5-4) 

line 

t J. K. Hunton, "Analysis of Microwave Techniques by Means of Signal Flow Graphs," IRE 
Transactions on Microwave Theory and Techniques, Vol MTT-8, pp 206-212, March 1960. 
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Figure 4.5-2. 

COAX-HB-64 

Example: Let us calculate the scattering matrix of an admittance Y 
shunted across a line of characteristic admittance Yc. We shall take both 
terminal planes t 1 and t2 to be coincident with the plane of Y (Figure 
4.5-2). 

When port 2 is terminated by a reflectionless load, the admittance 
Y1 that one sees if one looks into port 1 is Y + Yc, and the reflection 
coefficient one sees, which is equal to s 11 , is 

~ 1) reflectionless load on port 2 

-Y 
Y+2Yc 

Obviously the total voltages at the two ports have to be equal, so 

v~ + v1 = v; + v; 

or, dividing by V~ , 

v; v; 
1 + 

v~ 

(4.5-5) 

Now, if port 2 is again terminated in a reflection less load, so that v; = 0, 
the last equation yields a relation between s11 and s21 : 

1 + su = s21 (4.5-6) 

Since the shunt admittance is a symmetric obstacle, the scattering matrix 
is symmetric and we may combine (4.5-5) and (4.5-6) and write 
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sshunt admittance ( 

-Y 

Y+2Yc 

y 

l- Y+ 2Yc 

Figure 4.5-3. Flow graph consisting of 
a single branch. 

~­
z 

(4.5-7) 

COAX·HB·60 

A flow graph is a connected system of directed I ine segments that repre­
sents a set of algebraic equations. The vertices or nodes of the graph are the vari­
ables in the equations and the line segments or branches are the coefficients. In 
the flow graphs that are used to describe microwave circuits, the nodes are the 
ingoing and outgoing voltages, the V+'s and v-·s, and the branches are s-parame­
ters and reflection coefficients. Consider for example the equation 

(4.5-8) 

which describes the reflection due to a load. The flow graph of (4.5-8) is shown 
in Figure 4.5-3. 

The flow graph of equation 4.5-3, which describes a two-port in terms of 
its scattering matrix, is shown in Figure 4.5-4. 

v+ 9 21 
v-

I 2 

$11 $22 ( ;.}( ::·, ::.) ( ~ :) 
v 9

1z v+ 
COAX·HB·55 I 2 

Figure 4.5-4. Flow graph representing two-port scattering relations. 
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Another elementary flow graph that we shall need to use is that of a source, 
which we represent by an ideal voltage source Es in series with an impedance Zs, 
as shown at the left of Figure 4.5-5. The voltage and current at the terminal 
plane t are related by 

(4.5-9) 

and if we replace Vs and Is with v; and v; by substituting the relations 
+ - + -

Vs = Vs + Vs and IsZc = Vs - Vs, we get 

which we will write 

vs- = s + r v+ s s 

where 

and 

(4.5-10) 

(4.5-11) 

(4.5-12) 

The flow graph of equation 4.5-10 is shown at the right of Figure 4.5-5. 

I, I s "'-s 

z. \ 
~ v-=S+ rv+ ~ s 
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Figure 4.5-5. Equivalent circuit and flow graph of a source. 
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Figure 4.5-6. A two-port terminated in a load. 

When two microwave components are connected together, the outgoing 
wave at one port is the incident wave at the abutting one. Accordingly we may 
obtain the flow graph of an entire system by plugging together the flow graphs of 
its individual parts so that each v- coincides with the abutting V+. Thus if we 

connect a load to port 2 of a two-port device, as in Figure 4.5-6, the flow graph 
of the composite system is obtained by combining the graph of Figure 4.5-4 with 
that of Figure 4.5-3; it is shown in Figure 4.5-7. 

The importance of flow graphs is that they are the basis of a powerful top­
ological method for calculating measurable parameters- immittances, reflection 

COAX-HB-57 

Figure 4.5-7. Flow graph of the two-port and load shown in Figure 4.5-6. 
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coefficients, losses, phase shifts, etc- in microwave systems. By means of the 
nontouching loop rule one can write down expressions for these quantities more 
or Jess from an inspection of the flow graph. t 

made. 

We shall require a few definitions. 

The branches are the directed line segments out of which the flow graph is 

The nodes of the graph are the points at which the branches begin and end. 
A source node is a node to which are attached only exiting branches. 
A node value or signal is the value of the variable associated with a node. 

We practice the economy of using the Jetter that stands for the value also to label 
the node. The V+ 'sand v- 'sin our graphs are node values. 

A branch transmission is the value of the coefficient that is associated with 
a branch. The s's of Figure 4.5-7 are branch transmissions. 

A path is a set of consecutive, codirectional branches along which no node 
is encountered more than once. 

A path transmission is the product of the branch transmissions along a 
path. 

A first-order loop is a closed path on which any node is encountered just 
once per circuit. 

The meaning of first-order loop transmission will be obvious. 
A second-order loop is two first-order loops that do not touch. 
The meaning of second-order loop transmission will be obvious. 
A third-order loop is three first-order loops that do not touch, etc. 
The graph determinant is given by 

graph determinant = 1 - L first-order loop transmissions 

all first-
order loops 

+ L second-order loop transmissions 

all second-
order loops 

(4.5-13) 

The cofactor of a path is the graph determinant of the part of the graph 
that does not touch the path at any point. 

A graph transmission can be defined from a source node to a non-source 
node. The graph transmission from source node S to non-source node R is the 
amount of signal or node valueR due to a unit of signal or node valueS. That is 
to say, 

tAn excellent introduction to flow graphs is to be found in Mason and Zimmerman, 
"Electronic Circuits, Signals, and Systems," John Wiley and Sons, Inc., New York, 1960, 
Chapter 4. 
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Figure 4.5-8. The graph 
transmission from source 
nodeS to non-source node 

R is R/S when all other 
source-node values are 

zero. 

S /source node 

COAX·HB-61 

' \ --
--

graph transmission from (R) 
source nodeS to non-source node R = S all other source-node 

values equal to zero 

' ' 

(4.5-14) 

Finally, we can state the nontouching loop rule for calculating graph trans-
missions: 

graph transmission 
from S toR 

~ path X 
£..J transmission 

all paths 
from S toR 

path 
cofactor 

graph determinant 
(4.5-15) 

Example: We will illustrate the topological method by deriving the use­
ful formula for the reflection coefficient r 1 = V1 ;v; that one sees if one 
looks into port 1 of the loaded two-port shown in Figure 4.5-6. We ob­
serve from the flow graph of Figure 4.5-7 that v; is a source node and 

V1 is a non-source node, so that V~ ;v; is the graph transmission from 
v; to V1. 

The graph has just a single first-order loop, s22 fz, so that the graph 
determinant is 1-s22 f 1. There are two paths from v; to V~: su and 
s21 fzs12 • The cofactor of s11 is 1-s22r 1, and the cofactor of s21 fzs12 is 
1. Thus, according to (4.5-15), 

or 
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s 

(4.5-16) 

Example: As a further example let us consider the system shown in Fig­
ure 4.5-9, in which a two-port is terminated at port 2 in a load and at 
port 1 in a source. The flow graph is shown in Figure 4.5-10. We shall 
calculate the ratio v;;s, the graph transmission from source node S to 
non-source node v;. 

two-port 

COAX·HB-62 

Figure 4.5-9. A two-port with source and load. 

- + v 
s v2 vz 

'( 
s 12 ~ ~ 

v• v+ [.1'-
COAX-HB-54 s 2 l 

Figure 4.5-10. Flow graph of the two-port, source, and load shown in 
Figure 4.5-9. 

The graph has three first-order loops: ~Su' ~s21 rzs12' and s22 rz. 
There is one second-order loop, ~s11 s22 fz. There is only one path from 
S to v;; its transmission is s21 and its cofactor is 1. Thus 

v; s21 

s 1- (rssll +rss2lrlsl2 +s22rl) -f' rsslls22rl 

(4.5-17) 
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4.6 LOSS FORMULAS 

In this section we shall derive the basic formulas for the different kinds of 

loss that we discussed in Sections 3.3 and 3.4. 
Let us first consider the transfer of power from a source to a load that is 

directly connected to it (Figure 4.6-1). Using the method of the last section, one 
finds from inspection of the flow graph that the incident wave at the load Viis 

The power delivered to the load, according to (4.4-24), is 

Pz = ~ Yc lvii2 (1- lr11
2

) 

(4.6-1) 

(4.6-2) 

where Yc, the characteristic admittance of the connecting transmission line, is 
assumed to be real. Substituting (4.6-1), we have 

(4.6-3) 

We leave it to the reader to show that, when S and rs are fixed, Pz is maximum 
when r 1 = rs* and that this maximum value of P, called the generator's available 
power Pavail• is given by 

1 Is 12 

pavail = 2 yc 1 _ lr 12 
s 

From (4.6-3) and (4.6-4) we have 

conjugate mismatch loss ratio 

COAX·HB-59 

Pavail 

Pz 

s 
v-

s 

~ 

v+ 
I 

(4.6-4) 

v:+ z 

v:­z 

(4.6-5) 

Figure 4.6-1. Schematic diagram and flow graph of source and directly con­
nected load. 
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If a two-port is inserted between the source and the load, the load power 
will be 

(4.6-6) 

where Yc 2 is the characteristic admittance of the port-2-to-load JUnction and 
v; = vt is the voltage of the wave leaving port 2 and entering the load. If we 
substitute (4.5-17). which gives the ratio v;!s, into (4.6-2) we get 

Pz 

comparing (4.6-7) with (4.6-4), we have 

transducer-loss ratio 
Pavail (source) 

Pz 

J(1-surs) (1-s22rtl-s21 s12 rs rzl2 

(1- lrsi2l (1- lr112) 

(4.6-7) 

(4.6-8) 

When the source and load can be mated directly, so that it is meaningful to talk 
about insertion loss, we have, from a comparison of (4.6-7) with (4.6-3), 

insertion-loss 
ratio 

Pz with load connected directly to source 

Pz with two-port inserted 

1(1- surs) (1- s22rz)- s21 s12 rs rzl2 

ls21l2 11-r5 r 112 

assuming that Zcl = Zc2 . 

(4.6-9) 
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CHAPTER 5 

Basic Measurement Methods 
and Procedures 

5.1 REFLECTOMETERS, BRIDGES, AND SLOTTED LINES 

These are the three basic kinds of instruments that measure immittances 
or reflection coefficients at microwave frequeneies. Although reflection coef­
ficient and immittance are fundamentally one-port parameters, their measure­
ment is the basis of many two-port methods, as well as methods for the measure­
ment of such quantities as the propagation parameters of lines and the electric 
and magnetic properties of materials. 

There are two different kinds of reflectometers. The frequency-domain 
reflectometer (FOR) makes cw measurements whereas the time-domain reflecto­
meter (TOR) is a pulse instrument. 

The principle of the frequency-domain reflectometer is shown in Figure 
5.1-1. The directional coupler, whose schematic diagram is shown separately in 
Figure 5.1-2, is a four-port device with the following property: ports 1 and 2 are 
each coupled to ports 3 and 4 but not to each other, and I ikewise ports 3 and 4 
are each coupled to ports 1 and 2 but not to each other. Thus a sample of the 

sine- wave 
generator 

detector 

directional 
coupler 

reflection less 
termination 

COAX·HB-16 

Figure 5.1-1. Basic frequency-domain reflectometer. 
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Figure 5.1-2. Schematic diagram of a directional coupler. 

wave that is reflected from the unknown load in Figure 5.1-1 is diverted from 
the main transmission line and measured by the meter. 

The basic time-domain reflectbmeter is shown in Figure 5.1-3. The princi­
ple of its operation is obvious; the echo from each discontinuity in the system 
under examination is displayed on the oscilloscope. A drawing of the sort of 
trace one might see on the oscilloscope is shown in Figure 5.1-4. The step at t0 

is the front of the generator's pulse. The small dip at t 1 shows that there is a 
small shunt capacitive discontinuity in the system located at a distance 
%(t1 - t 0 )/v beyond the sampling point. The step at t2 indicates a resistive load 
(whose resistance is larger than the characteristic impedance of the line) at a 
distance Y2(t2 - t0 )/v beyond the sampling point. 

Figure 5.1-3 
reflectomet 

. Basic time-domain 
er. 

pulse 
generator 

~ 
'f 

pad 

oscilloscope 

0 

sampling 
p oint 

to system under 
test 
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Figure 5.1-4. TDR oscilloscope 
trace. 
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Figure 5.1-5. Schematic diagram of the Thurston bridge. 

As an example from the large variety of microwave bridge arrangements, 
we shall describe the Thurston bridge, shown schematically in Figure 5.1-5. 
Three coaxial lines, the admittance branches, meet in aT-junction. These lines, 
the unknown branch, the real branch, and the imaginary branch, are terminated 
respectively in the unknown admittance, a reflectionless load, and a variable 
short. A fourth branch, normal to the plane of the junction, goes to the detec­
tor. The generator signal is injected into the three admittance branches by three 
identical variable coup I ing loops, which are driven in parallel by the generator. 

An equivalent circuit of the bridge junction is shown in Figure 5.1-6. 
Since the voltage injected into each admittance branch by its coupling loop is 
proportional to the variable coefficient of coupling, we have shown generators 
in these three branches whose emf's are proportional to the three coupling coef- . 
ficients, kx, kr, and ki. The currents Ix, Ir, and Ii are the currents in the three 
branches at the locations of the respective coupling loops. The admittance ¥; 
is the normalized admittance that we see at the location of the coupling loop in 
the unknown branch when we look toward the unknown admittance. It it equal 
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Figure 5.1-6. Equivalent circuit 
of the bridge of Figure 5.1-5. 

detector 
COAX-HB-86 

to the normalized admittance Yx of the unknown transformed by the length of 
line that separates the unknown from the coupling loop. The variable short in 
the imaginary branch is set at an electrical distance of 45 degrees (A/8) or 135 
degrees (3N'8) from the location of the coupling loop in that line. The normal­
ized admittance presented by the imaginary branch at the coupling loop is there­
fore -j (see equation 1.8-20). The normalized admittance of the real branch is 1. 

The bridge is balanced by adjusting the loops for a detector null. At bal­
ance, therefore, the currents in the three admittance branches add up to zero at 
the junction. If we assume that the distance from the loops to the junction is 

negligible, we have Ix + Ir + Ii = 0 at balance, and sinceix ex: ¥;kx, Ir ex: 1 X kr, 
and Ii ex: -jki, this null condition leads to 

-, 1 
Yx = k (-kr + jki) at balance 

X 

We see from this equation that the real and imaginary components of Y~ are 
proportional to the coup I ing coefficients kr and ki respectively, and both of 
them are multiplied by 1/kx. An indicator is attached to each coupling loop so 
as to show its angular position and hence the degree of coupling. The scales cor­
responding to kr, ki, and kx are calibrated to read respectively the real and imag­
inary parts of Y~ and a multiplying factor. 

The assumption that the distance between the loops and the junction is 
zero is of course valid only at low frequencies. The bridge can be compensated 
to correct this error up to about 1500 MHz, which is therefore the upper limit to 
the useful frequency range of this sort of instrument. 

Figure 5.1-7 is a photograph of the General Radio Type 1609 Precision 
UHF Bridge, which operates on the principle we have just described. 
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Figure5.1-7. The General Radio 
Type 1609 Precision UHF 
Bridge. 

The "classical" method of measuring reflection coefficients and immit­
tances, and still the most versatile method, is the standing-wave technique, in 
which the standing wave due to the termination is explored by means of a mov­
able probe inserted into a slotted line. The basic slotted-line arrangement for the 
measurement of an unknown immittance or reflection coefficient is shown in 
Figure 5.1-8. As we saw in Section 1.9, both the magnitude and phase of the re­
flection coefficient at the terminal plane can be determined from the standing­
wave ratio on the slotted line and the position of the minima. 

generator 

probe, 

standing-wove 
detector and meter 

I 
1-------11-----L-----111-----1 

I 

slotted line 

,,.J,nal 
plane 

unknown 
termination 

COAX·HB·B4 

Figure 5.1-8. Basic arrangement for determination of an unknown immittance 
or reflection coefficient with a slotted line. 
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Figure 5.2-1. The General Radio 
Type 874-LBB Slotted Line. 

5.2 STANDING-WAVE MEASURING EQUIPMENT 

The General Radio 874-LBB coaxial slotted line is shown in Figure 5.2-1. 
It is a 50-centimeter section of rigid, 50-ohm air-dielectric line with a narrow 
axial slot in the outer conductor. A probe, which protrudes through the slot into 
the region between the conductors, samples the electric field in the line. The 
probe is mounted on a carriage that travels the length of the line. The slot is 
clearly seen in the close-up of Figure 5.2-2, which also shows how the microm­
eter is swung into position in order to make small, precise displacements of the 
carriage. The probe carriage slides on the outer conductor, thus ensuring con­
stancy of probe penetration as the carriage is moved along the line. 

Figure 5.2-2. The slot along the top of the line's outer conductor is clearly visi­
ble in this close-up of the carriage assembly, which also shows the micrometer in 
position. 
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Figure 5.2-3. The probe is part of the rf­
probe subassembly that includes the left-hand 
connector. A small screw inside the connec­
tor's center conductor adjusts probe depth. 

The probe itself is part of the rf-probe subassembly that includes the left­
hand connector on the carriage (Figure 5.2-3). This connector's center conductor 
is electrically connected to the probe, and a small screw inside the center conduc­
tor adjusts the probe depth. A grounded sleeve, part of the main carriage assem­
bly, shields the probe as it passes through the slot, thus preventing changes in 
probe voltage due to variations in capacitance to the slot walls as the carriage is 
moved. The probe carriage also houses an envelope detector consisting of a diode 
rectifier and by-pass capacitor. The rectified probe voltage is brought to the right­
hand connector on the carriage. 

There are two essentially different methods that can be used to detect the 
probe voltage. In the heterodyne method, a local oscillator and mixer convert 
an unmodulated rf signal on the probe to an intermediate-frequency signal, 
which is amplified and measured. Alternatively, the rf signal on the line can be 
modulated and a standing-wave meter used to measure the rectified modulation 
envelope of the probe voltage. We shall discuss this latter method first. 

When the Type 874-LBB Slotted Line is to be used with a standing-wave 
meter, the subassembly consisting of the left-hand-connector and probe may be 
replaced by the probe-and-tuner (G R Type 900-DP) shown in Figure 5.2-4. The 

900-DP contains an adjustable shorted stub that shunts the probe. Adjustment 
of the stub for resonance with the probe and diode capacitance maximizes the 

detector sensitivity and permits the prob"e to be adjusted for minimum penetra­
tion into the line. The right-hand connector, at which the rectified modulation 
envelope is available, is connected to the standing-wave meter. When ease of 
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Figure 5.2-4. (a) When the Type 874-LBB Slotted Line is used with a standing­
wave meter, the rf-probe subassembly (Figure 5.2-3) is replaced by the probe-and­
tuner (Type 900-DP). The micrometer at the top of the 900-DP adjusts probe 
depth. (b) Close up of 900-DP removed from its seat in the probe carriage. 

probe-depth adjustment is not important, an inexpensive alternative to the 
900-DP is the rf-probe subassembly with a G R Type 874-D20L Adjustable Stub 
attached to its connector. 

Modulation of the rf generator usually consists in keying the signal on and 
off with a fifty-percent duty cycle at a rate of 1 kHz. Sine-wave amplitude mod­
ulation of an oscillator is usually accompanied by an objectional amount of fre­
quency modulation; 

A standing-wave meter is a 1-kHz tuned amplifier preceded by a calibrated 
adjustable attenuator and followed by a rectifier and meter. The G R 1234 
Standing-Wave Meter is shown in Figure 5.2-5. The numbers on the meter's SWR 
scales are proportional to the reciprocal of the square of the 1-kHz voltage at the 
input; if the detector has a square-law response-a point we shall take up pres­
ently-the meter readings are therefore proportional to the reciprocal of the 
probe voltage. Thus, if the meter reading is 1.0 (0 dB) when the probe is at a 
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voltage maximum, the meter reading at a voltage minimum is equal to the 
standing-wave ratio r (or r(dB)). 

Large SWR's (greater than 4.0) can be read on the Type 1234 if the "meter 
scale" switch is turned to "3.2- 10" or "10- 40" to obtain the minimum 
reading. In these positions of the switch, the voltage gain ahead of the meter is 
increased by factors of 3.16 (10 dB) and 10 (20 dB) respectively. Small SWR's 
(from 1.2 down to about 1.001) can be read accurately on the expanded scales 
"1- 1.2" and "1- 1.05." In thesepositionsofthe "meter scale" switch, the 
gain ahead of the meter is increased, but bias currents are applied to the meter 

Figure 5.2-5. The GR Type 1234 Standing-Wave Meter. 
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Figure 5.2-6. The General Radio Type 874-LBB Slotted Line with Type 900-DP 
probe-and-tuner and Type 1234 SWR Meter in a typical laboratory setup. Behind 
the slotted line on the left is the modulating power supply and next to it is the 
oscillator. The device under test is mounted in the shielded component mount 
attached to the right-hand end of the slotted line. 

that offset its reading downscale. The combined effect of the increased gain and 
the offset is that a full-scale reading of 1.0 (0 dB) on the expanded scales occurs 
for the same detector voltage as on the "1 - 4" scales but, because of the higher 
gain, decreases in the probe voltage by factors of only 1.2 and 1.05 move the 
needle all the way downscale in these ranges. 

If gross errors are to be avoided, two additional components must be in­
cluded in the slotted-line setup. These are an attenuator or isolator and a low­
pass harmonic filter, both inserted between the generator and the slotted line. 
The attenuator, 6 or 10 dB, serves to pad the oscillator from changes in its load 
impedance as various loads, including shorts and opens, are attached to the 
slotted line. Without the pad the oscillator frequency would be likely to change 
with such wide variations in load impedance. A ferrite isolator answers for this 
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Figure 5.2-7. Schematic diagram of a slotted-line setup using a modulated oscil­

lator and SWR meter. 

purpose just as well. The low-pass filter keeps harmonics of the oscillator fre­
quency out of the slotted line. This precaution is unnecessary when a hetero­

dyne detector is used because of the high frequency selectivity of the heterodyne 
method, but the tuned probe and diode used with the SWR meter may have very 
little harmonic rejection because of higher-order resonances. When the SWR is 

high, even a small harmonic signal accompanying the oscillator output could lead 
to a totally erroneous measurement of the voltage at a standing-wave minimum. 

When the applied signal is sufficiently small, a diode detector is a square­
law device, that is, the rectified output voltage is proportional to the square of 
the rf input voltage. We have already said that the calibration of the SWR meter 
is based on the assumption that the diode is operating in its square-law range. 
Unfortunately one cannot state what the square-law range of a diode is, because 
the rectification characteristic depends not only on the individual diode but also 
on the source and load impedances that the diode sees, but the curve of Figure 
5.2-8 is representative. 

It is important to be able to determine whether, under given circum­
stances (frequency, probe depth, stub length, oscillator power, diode), the detec­
tor is within its square-law range. The slotted line itself can be made to function 
as an accurately calibrated attenuator in a precise determination of the detector 
response characteristic. We show in Appendix A to this chapter that if the 
slotted line has a totally reflecting termination, the standing wave (whose SWR 
is of course infinite) has the form of a rectified sinusoid, as shown in Figure 
5.2-9. In this special case, the electrical distance along the line between a voltage 
maximum and the position on either side of the maximum where I VI=% I vlmax 
is 60 degrees or 1/6 wavelength. Thus the following procedure may be used as a 
check on the proper response of the detector. (1) Terminate the slotted line in 

5.2 STANDING-WAVE MEASURING EQUIPMENT 141 



1000 

> 
E . 
~ 100 
:::::!: 
0 
II) 
II) 
0 ... 
0 
0 

Q) 
01 
0 10 -0 
> 
u 
"0 

10 100 1000 
rf voltage across diode, mV 

COAX·HB-90 

Figure 5.2-8. Typical rectification characteristic of a silicon point-con· 
tact microwave diode. In this particular case the diode exhibited a 
square-law response up to about 100 mV of rf input. 
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Figure 5.2-9. When the termination on the slotted line is totally reflecting, the 
standing wave has the form of a rectified sinusoid and the half-voltage points are 
60 degrees or X/6 from the maxima. 

an open- or short-circuit. (2) Locate two consecutive minima. The point mid­
way between them is a maximum (we measure minimum positions and compute 
maximum positions because minima are sharper). (3) Take a SWR-meter reading 
at the maximum. (4) Take a second reading at a point X/6 away from the maxi­
mum (2/3 of the way from the maximum to an adjacent minimum). In this latter 
position the probe voltage is one half its value at the maximum. (5) If the diode 
is operating in its square-law region, the second SWR-scale reading will be 6.02 
dB higher than the first (SWR increases downscale). If the diode is being driven 
beyond its square-law region, the readings will differ by less than 6.02 dB. In the 
latter case, the power level at the detector must be reduced - by withdrawing 
the probe, detuning it, decreasing the oscillator output, or inserting additional 
attenuation between the oscillator and the slotted I ine. 

The minimum amount of rf signal that must reach the diode is determined 
by the requirement that the noise generated in the first stage of the 1-kHz amp I i­
fier must not cause an appreciable error in the meter reading. One can make an 
estimate of the minimum usable signal from the following considerations. The 
output of the 1-kHz amplifier contains two components, one due to the signal 
and the other due to noise. If Vis the voltage of this output signal, then, since 
signal and noise are uncorrelated, 

v~s (signal +noise) = VT~S (signal) + v:ms (noise). (5.2-1) 
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Because of the square-law response of the diode, SWR-scale readings are inversely 
proportional to the square root of the amp I ifier output voltage: 

SWR-scale reading 
1 

0::---

VVrms 
(5.2-2) 

The presence of noise increases the meter deflection and hence makes the actual 
SWR-scale reading smaller than a true reading. In view of (5.2-1) and (5.2-2) we 
can see that the actual reading (due to both signal and noise), the true reading 
(which would be observed if there were no noise), and the reading due to noise 
alone are related by 

+ 

( 

s:~~~~~le )

4 

(s:~~~~~le)
4 

due to due to 
signal + noise signal 

(
SWR-~cale) 4 

read1ng 
due to 
noise 

(5.2-3) 

Example: Suppo~ that we will tolerate at most a one-percent error due 
to noise in the SWR-scale reading. Since the SWR-scale reading in the 
presence of noise is smaller than the true reading (meter deflection is 
larger), the requirement of a one-percent maximum error means that 

SWR-scale 
reading 
due to 

signal + noise 
;;;. 0.99 

SWR-scale 
reading 
due to 
signal 

or, in view of (5.2-3), 

1 -

SWR-scale 
reading 
due to 

reading 
due to 
noise 

4 

;;;. 0.99 
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whence we get 

SWR-scale 
reading 
due to 

signal + noise 
SWR-scale 

reading 
due to 
noise 

.;;;; 0.45 

Thus the SWR-scale reading due to both signal and noise must not be 
more than 0.45 times the reading due to noise alone (meter deflection 

due to both signal and noise must be at least 1 /(0.45) 2 = 4 times the 
deflection due to noise alone). 

The noise reading should be made by turning off the rf generator; discon­
necting the SWR meter from the detector would radically change the source im­
pedance that the 1-kHz amplifier sees and hence also the amount of noise that it 

generates. 

The dynamic range of a point-contact diode used as a SWR detector, 
limited at the bottom by noise and at the top by deviation from square-law re­
sponse, is typically 30 dB or better. A bolometer, while it is on the order of 10 

dB less sensitive than a diode, has a dynamic range of about 50 dB. The bolom­
eters that are usually used as SWR detectors are barretters rather than thermis­
tors. The barretter is an ohmic device consisting of a piece of very fine platinum 
wire installed in the same kind of package that houses a point-contact diode. 
When the barretter is used as a standing-wave detector, it is supplied with a bias 
current of a few milliamperes by the SWR meter. The presence of an rf current 
in the wire causes a temperature rise- in addition to the already-elevated 
temperature due to the bias current. The increase in temperature causes an in­
crease in the wire's de resistance, which in turn causes an increase in the de volt­
age drop along it. The thermal time constant of the barretter wire is short 
enough that the resistance changes can follow the 1-kHz modulation of the rf 
signal, and the 1-kHz fluctuations in the de voltage drop across the barretter are 
applied to the input of the 1-kHz amplifier. The barretter's response is very pre­
cisely square-law as long as the de bias current is very much larger than the rf 
current. 

Heterodyne detection can be used as an alternative to the SWR meter when 
greater sensitivity and more accuracy are wanted, as is the case, for example, in 
the measurement of very high standing-wave ratios. 
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Figure 5.2-10. The heterodyne method of standing-wave detection. 

When the Type 874-LBB Slotted-Line is used in a heterodyne arrangement, 
the 900-DP probe-and-tuner is not used. The rf-probe subassembly is installed in 
the left side of the probe carriage, the diode is removed from the probe carriage 
(the right-hand connector is unused), and the rf-input arm of a diode mixer 
(Type 874-MRAL, Figure 5.2-11) is connected directly to the probe through the 
left-hand connector. The signal on the slotted line is unmodulated and the local­
oscillator frequency is offset from the signal frequency by an amount .equal to 
the intermediate frequency, usually 30 MHz. 

Figure 5.2-11. The GR 
Type 874-M RAL Mixer. 

local 
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Figure 5.2-12. The GR Type 1236 30-MHz i-f amplifier and meter. 

The G R Type 1236, a 30-MHz i-f amplifier and meter combination, is 
shown in Figure 5.2-12. To measure a standing-wave ratio with this instrument, 
one adjusts the "attenuation" and "gain" controls for a meter reading of 0 dB 
when the probe is at a standing-wave minimum. The reading on the dB scale 
when the probe is moved to a maximum, plus any change in the attenuator set­
ting that is needed to keep the needle on the scale, is equal to the SWR in dB. 
The "expanded 1-dB range" position on the "meter scale" switch spreads the 
segment of the main scale between 9 and 10 dB out over the entire movement of 
the needle. This scale is used when the SWR is less than 1 dB (ratio less than 
1.12). The "compressed uncal ibrated" position of the "meter scale" switch 
turns on an automatic-gain-control loop whose threshold corresponds to a meter 
deflection of about 35 percent of full scale. A very wide range of input-signal 
levels is then compressed into the upper 65 percent of the meter movement. The 
"compressed uncalibrated" range facilitates the initial location of maxima and 
minima when the SWR is high, 

Some care is needed in the adjustment of the local-oscillator frequency for 
heterodyne detection to make sure that the i-f signal is not due to harmonics of 
the local oscillator beating with harmonics of the probe signal. Two correct local 
oscillator frequencies are given by 

fz = fs ± !; (correct local-oscillator frequency) (5.2-4) 

where the subscripts l, s, and i refer to the local oscillator, the probe signal, and 
the i-f signal respectively. Thus, with the usual intermediate frequency of 
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Figure 5.2-13. The 874-LBB Slotted Line in a typical laboratory setup using 
heterodyne detection. The Type 874-MRAL Mixer is attached to the left-hand 

connector on the probe carriage. The local oscillator (extreme right) is supplied 
with power from an auxiliary power take-off plug on the Type 1236 1-F Ampli­
fier. To the left of the Type 1236 is the oscillator that drives the slotted line, 
and its power supply (extreme left) is switched to the cw mode since an unmodu­
lated signal is detected by the heterodyne method. 

30 MHz, correct i-f signals will be observed at two local-oscillator frequencies, 
60 MHz apart, one on either side of the slotted-line frequency. If the i-f signal is 
due to the nth harmonic of the slotted-line signal beating with the nth harmonic 
of the local oscillator, the local-oscillator frequency will be 

1 
fz=fs±-fi 

n 
(spurious i-f signal due to nth harmonic) (5.2-5) 

These pairs of spurious images occur between the pair of correct local-oscillator 

frequencies. Any doubt about the local-oscillator setting can be resolved quickly 
by a check of the slotted-line wavelength to see that it corresponds to the genera­
tor's fundamental frequency. 

We have seen that when a microwave diode is used as a demodulator it is 
operated at low enough levels-a few millivolts-that its detection characteris­
tic is square-law. But as a mixer the diode functions as a switch that is turned on 
and off by the local oscillator. The conversion characteristic of the mixer is 
linear; that is, the level of the i-f signal is proportional to the level of the rf signal 
from the probe. 

The functioning of the diode as an efficient mixer requires a relatively large 
local-oscillator signal, since the local-oscillator voltage has to push the diode 
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quite far into its forward conduction region and quite far into its back-biased 
"off" region. If conversion is to be linear, the change in diode resistance due to 
the probe signal must be negligible compared with that due to the local-oscillator 
signal; in other words, the probe voltage must be very much smaller than the 
Jocal-osci !Jatar voltage. 

The rectified direct current that flows through the diode is a measure of 
the mixer's conversion efficiency. Of course the diode current depends primarily 
on .the local-oscillator signal level, but it is also somewhat frequency dependent­
more power is needed to produce a given diode current at higher frequencies. 
Furthermore, as one can see from the schematic diagram of the mixer in Figure 
5.2-11, the probe arm of the mixer shunts the path over which the local-oscillator 
signal gets to the diode, and the impedance of this shunt at the local-oscillator 
frequency affects the coupling of local-oscillator power to the diode. The 

amount of diode current that is optimum is a question of signal-to-noise ratio: 
larger currents generate more diode noise and srrraller currents yield lower con­
version efficiency. This is not a crucial matter and a diode current of about half 
a milliampere is satisfactory, The "de mixer current" position of the "meter 
scale" switch on the Type 1236 1-F Amp! ifier puts the front-panel meter in 
series with the center conductor of the i-f input so that the diode current in the 
Type 874-MRAL Mixer can be checked. Since the probe is an open circuit for 
direct current, the local-oscillator output must provide a de path to ground for 
the diode current. 

5.3 MEASUREMENT OF ONE-PORT REFLECTION COEFFICIENTS AND 
IMMITTANCES BY THE STANDING-WAVE METHOD 

In Section 1.9, Chapter 1, we discussed the way in which the terminal re­
flection coefficient on a lossless line determines the relative amount of standing­
wave voltage variation and also the position of the standing wave. We saw there 
that the magnitude of the terminal reflection coefficient determines the standing­
wave ratio, while its angle determines the position of the standing wave. 

When the standing-wave ratio is neith'er too large nor too small it can be 
read directly from the scale of a standing-wave indicator in a completely 
straightforward manner. Very large or small SWR's may require some special 
techniques that we shall take up presently. 

The angle of the terminal reflection coefficient is a little more complicated 
to find. The procedure involves the following steps. 1) Determination of the 
position of a standing-wave minimum when the unknown load terminates the 
slotted line. (One always measures the positions of minima rather than maxima. 
This is partly because minima are sharper and partly because they are perturbed 
less than maxima by the presence of the probe.) 2) Determination of the posi­
tion of a standing-wave minimum when the slotted line is terminated in a short. 
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Figure 5.3-1. When a short replaces the unknown termination, the shift in the 
position of a standing-wave minimum determines the angle of the unknown 
reflection coefficient. 

3) Measurement of the wavelength on the slotted line. This is just twice the dis­
tance between adjacent minima. (A slotted-line measurement of wavelength is 
I ikely to be far more accurate than a reading on the frequency dial of a micro­
wave oscillator.) 4) When the short replaces the unknown termination, the new 
minima will not in general fall where the old ones dirl, Let/::, be the physical dis­
tance from a minimum due to the unknown to a minimum due to the shortt 
The angle 8 s of the unknown reflection coefficient at a reference plane s that 
coincides with the plane of the short is given by 

Bs = 180 deg ± 2~/::, (5.3-1) 

TheJ ±}sign applies when the minimum due to the short is on the { loadt } I genera or 
side of the one due to the unknown. 

Let us see why this procedure works. Determination of a minimum posi­
tion when the I ine is shorted serves to identify a reference plane, let us call its', 
that is exactly an integral number of half wavelengths from the plane s of the 
short. At s', no matter how the line is terminated, the impedance and reflection 
coefficient are the same as those at s. Now, when the unknown load terminates 
the line, a minimum will not in general fall at s'. Let us label with an m the posi-

tsince a standing wave has minima every half wavelength, a minimum due to the short will 
always fall within a quarter wavelength of a given minimum due to the unknown. Thus we 
shall assume for the sake of a definite picture that~ is not greater than a quarter wavelength, 
although the result we shall give is valid when ~ is the distance from any minimum due to 
the unknown to any minimum due to the short. 
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tion of a minimum due to the unknown. The distance between s' and m is 6. 
Since the angle (J of the reflection coefficient at a standing-wave minimum is 180 
degrees, the angle fJ(s') at s', hence also the angle fJ(s) at s, is equal to 180 deg 
±2/36, +when s' is on the load side of m,- when s' is on the generator side of m. 

Example: When an unknown load is connected to the slotted line the 
SWR is 1.6. When a GR Type 874-WN3 Short-Circuit Termination is 
connected to the line, the minimum position shifts 5.1 em toward the 
load and the distance between minima is 12.0 em. The plane of the short 
in the Type 874-WN3 is 3.0 em toward the load from the front (genera-

Figure 5.3·2. 
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tor side) surface of the bead in the 874-WN3's connector. What is the 
impedance of the unknown load at the front surface of the bead in the 
load's connector? 

The wavelength A. is 2 X 12.0 em = 24.0 em, so that the minimum 
shift /::, of 5. 1 em is equal to 0.212 wavelength. If we enter the Smith 
chart (Figure 5.3-2) on the 8 = 180 deg radial at a radius corresponding 
to a SWR of 1.6, and then go around the chart toward the load (because 
the minimum shifted toward the load) 0.212 wavelength, we arrive at the 
point on the chart that corresponds to the plane s of the short. But we 
don't want the impedance at this plane; we want it at the front surface of 
the bead, 3.0 em = 0.125 wavelength toward the generator from s. So 
we back up toward the generator 0.125 wavelength and arrive at a nor­
malized impedance of 0.75- j0.32. 

We mentioned above that very small and very large standing-wave ratios re­
quire special techniques. The measurement of small values of the SWR presents 
no particular difficulty provided the indicating instrument has sufficient sensi­
tivity to allow the accurate reading of very small changes in the probe voltage. A 

problem arises, however, in the location of the minima, since they are so broad. 
The solution is to locate two points on the "hillsides" of the standing wave, one 
on either side of the minimum, at which the meter readings are equal (Figure 
5.3-3). The minimum must obviously be halfway between these points. For 
highest accuracy, the two points should be chosen where the slope of the stand­
ing wave is greatest. 

w 

w, 
W(voltmln) 

I vi 

COAX·HB-79 

Figure 5.3-3. Location of the minimum when the SWR is small. If the standing­
wave voltages at the two positions w 1 and w2 are equal, there is a minimum at 
w(volt min) = Y2 (w2 - w 1 ). 
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Large standing-wave ratios present the reverse problem. The minimum is 
sharp and easily located but the measured SWR is likely to be in error owing to 
perturbation of the standing wave by the probe. The probe introduces a shunt 
discontinuity into the slotted line. Since the impedance at a standing-wave mini­
mum on a line with a high SWR is small, the effect of the probe is negligible 
when the probe is at a minimum. But at a standing-wave maximum, where the 
impedance is very high, the probe admittance may be a significant load across 
the line. The effect of loading by the probe is that measured SWR's are smaller 
than they would be if the probe were not there. 

Because of probe loading, standing-wave ratios larger than about 10 should 
be determined by the width-of-minimum method, in which all readings are taken 
with the probe close to a standing-wave minimum. Two points, one on either 
side of the minimum, are located at which IVI=v'21vlmin {3.01 dB higher than 
I Vlm;n). The separation o between these points is measured with the micrometer, 
and the standing-wave ratio is calculated from the formula 

r = 3- cos{3o 2 
1 - cos{3o - {38 

Equation 5.3-2 is derived in Appendix B to this chapter. 

{5.3-2) 

!vi 

Figure 5.3-4. Determination of a large standing-wave ratio by the width-of­
minimum method. 
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Appendix to Chapter 5 

A. Shape of the Standing Wave when the Termination is Totally Reflecting 

Equation 4.4-20, Chapter 4, gives the magnitude of the standing-wave volt­
age distribution. If we apply this formula to the case of an open or short on the 
end of a lossless line by setting a= 0 and r{O) = ±1, we have 

J1 {21cos~wl} IV(w)l o: y2±2cos~w = 2 2 (1 ±cos2~w) = 2 1sin~wl (5.A-1) 

Since the magnitudes of the cosine and sine fall to Y2 at 60 degrees ei~her side of 
a maximum, the half-voltage points are 60 degrees or A/6 away from the maxima. 

B. The Width-of-Minimum Formula 

The standing-wave voltage distribution on a lossless line is given by equa­
tion 4.4-20, Chapter 4, with a set equal to zero: 

IV(w)l o:.J1 + lrl 2 +21rlcos(2~w-l:l (0)) (5.8-1) 

(We have omitted the zeros in parentheses following the r's because the magni­
tude of the reflection coefficient is the same everywhere on a lossless line.) 

The width 5 of the minimum is defined as twice the distance from the 
minimum point Wmin to the point on either side of Wmin at which the voltage 
has increased by a factor of y'2, Thus 

(5.8-2) 

A minimum occurs where the cosine in (5.8-1) is equal tQ -1, so that wmin is the 
value of w that makes the argument of the cosine equal torr radians, and 

(5.8-3) 

At a distance 5/2 either side of wmin• the argument of the cosine differs from rr 
by ~5, and since cos(rr ± ~5) = -cos ~5 we have 

IV(wm1n ± «5/2)1 o: V1 + lrl 2 -21rlcos~5 (5.8-4) 
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Substitution of (5.8-3) and (5.8-4) in (5.8-2) yields the equation 

1 + lrl 2 -21rlcos~o = 2( 1 + lrl 2 -21r1) 

and the replacement of lrl by (r- 1 )/(r + 1) leads to 

r = 3- cos~o 

1 - cos~o 
(5.8-5) 

If we replace cos~o by the first two terms, 1 - ~~2 o 2 , of its power series, we get 
the approximate formula 

r = 2 
- ~0 
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Table of Symbols 

A - total attenuation of I ine section 
a- radius of inner conductor of coaxial I ine 
b- radius of outer conductor of coaxial line 
c- shunt capacitance/unit length of line 

velocity of light 
D- dissipation factor of dielectric 
e- 2.718 ... 
E- electric field strength 

phasor electromotive force 
frequency f­

g­
G­
H-

shunt conductance/unit length of line 
conductance 

i-
I-

magnetic field strength 
instantaneous current 
phasor current 
phasor current of forward (or ingoing) wave 

It­
I(w)­

j­
K-
1-

phasor current of reflected (or outgoing) wave 
phasor current in the termination 
phasor current at the location w 
imaginary operator (j = J=1) 
surface current density 
physical length of a section of line 
series inductance/unit length of line 

n- index of refraction 
an integer 
turns ratio of transformer 

P- power 
Q- dielectric 0 
r- standing-wave ratio 

series resistance/unit length of line 
R- return loss 

resistance 
s- scattering parameter 
S- amplitude of a source 
t- symbol used to label reference plane of the termination 
v- velocity 

instantaneous voltage 
V- phasor voltage 
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V+- phasor voltage of forward (or ingoing) wave 
v-- phasor voltage of reflected (or outgoing) wave 

Vt- phasor voltage across the termination 
V(w)- phasor voltage at the location w 

w­
WE­

WH­
y­
Y­
Y-
Yc­
Yt-
z-
z­
z-

variable of position on a transmission line 
energy/unit length of line associated with the electric field 
energy/unit length of line associated with the magnetic field 
shunt admittance/unit length of line 
admittance 
normalized admittance 
characteristic admittance of line 
admittance of termination 
series impedance/unit length of line 
impedance 
normalized impedance 

Zc characteristic admittance of I ine 
Zt- admittance of termination 
Z(w) - ratio of voltage to current at the location w 
a- attenuation constant 
{3 - phase constant 
r- propagation constant (r =a+ j{3) 
r- reflection coefficient 
rt- reflection coefficient of the termination 
r(w) - ratio of reflected to forward voltages at the location w 
o - loss angle of dielectric 

skin depth 
"width" of standing-wave minimum 

/':,- shift in minimum position 
e- permittivity 
Er- relative permittivity 
€"'- complex permittivity 
?;. - complex relative permittivity 
c' - real part of € 
c" - imaginary part of € 
€~ - real part of €,. 
E;'- imaginary part of'?r, loss factor 
8 - angle of reflection coefficient 
cp- angle of a phasor 
X- wavelength 
JJ-- permeability 
a- conductivity 
X- charge/unit length of line 
w- angular frequency 
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Index 

Adjustable Stub, 138 
Admittance: 11, 66-72, 109 

normalized, 37, 66, 67 
normalized grid, 68 
per unit length, 114 

Angle, Phase, 9 
Attenuation: 14-20, 60-63,84-90 

below cutoff, 25 
characteristic insertion loss, 86-91, 

102 
due to conductor loss, 17, 18 
constant or factor, 17, 107 
due to dielectric loss, 20 

Available Power, 80,81, 129 

Barretter, 145 
"Black-Box", 73 
Bolometer, 145 
Branch, 123, 126 
Branch Transmission, 126 
Breakdown Voltage, 2, 3 
Bridges: 131-136 

Thurston, 133 
UHF, 134 

Capacitance Per Unit Length, 21, 22, 
109 

Characteristic: 
admittance, 11, 109 
immittance, 11-14 
impedance,28,37, 109,113,115 
impedance of lossless I ine, 12, 21, 

111 
insertion loss, 86-90, 102 

Coaxial Line: 
lossless, 1 09-111 
with small losses, 111-115 

Coaxial Slotted Line, 136-149 
Coefficient: 

input and output reflection, 90-96 
reflection, 32, 34-42,44, 51-54,57, 

60,61,63, 74,75 
Cofactor, 126 
Complex Permittivity, 19 
Complex Reflection-Coefficient Plane, 

93-95 
Conductivity, Effective, 112, 114 
Conductor Loss,5,6, 12-14,17,18, 

112, 113 
Conjugate Mismatch Loss: 81-84, 129 

maximum and minimum, 82,83 
Constant: 

dielectric, 7 
phase, 8, 10, 107, 113 
propagation, 1 07, 111 

Continuity of Voltage and Current, 
30 

Current: 
displacement, 18 
distributions, 47-49 
instantaneous, 2, 3 
loss, 18 
maxima and minima, 47-49 
rate of change with position, 106 
ratio, 14-16 
reactive, 18 
surface, density, 112 
total, 29, 30 

Cutoff Frequency, 23 
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Decibel, 14, 15 
Dielectric: 

constant, 7 
power factor, 19 
0, 19 
velocity in, 7 

Directional Coupler, 131 
Discontinuities, 96-104 
Dissipation: 

factor, 19 
loss, 87, 96 

Distance, Electrical, 10 
Distributed Circuit Model, 20-22 
Distributed Parameter Transmission 

Line, 105-109 

Effective Conductivity, 112, 114 
Efficiency, 87 
Electric: 

field, 1-3, 109 
permittivity, 7 

Electrical Distance or Length, 10 
Electrically Symmetric Two-Port, 78 
Energy Per Unit Length, 1 09-11 0 
Error: 

noise, 144 
mismatch, 88-90 

External Inductance Per Unit Length, 
110 

Fields: 
electric, 1-3 

Hu, 24 
in coaxial lines, 1-5 
instantaneous magnitude, 2 
magneti c, 1-3 
principal mode, 3 

Flow Graphs, 120-129 
Forward Wave, 26, 28, 29 

Frequency: 
resonant, 11 
cutoff, 23 
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Frequency-Domain Reflectometer, 
131-132 

Gain Ratio, 14 
Graph Determinant, 126 
Graph Transmissiom, 126 
Grid, Impedance, 54-60 

Heterodyne Method, 137, 145, 146 
Higher-Mode Waves, 1, 22-25 
Homogeneity, 107 

Ideal Transformer, 76, 77 
lmmittance, Characteristic, 11-14 

measurement of, 135-149 
Impedance: 

characteristic, 11, 13, 28, 37, 109, 
111' 113, 115 

grid, 54-60 
input, 58, 59 
lumped, 26 
normalized, 37 
normalized grid, 54 
surface, 112 
terminal, 29, 36, 58, 59, 64, 65 
transforming property, 40 

Incident Wave, 26, 28,29 
Index of Refraction, 6 
Inductance Per Unit Length, 21, 110, 

113 
Insertion Loss: 84-90, 130 

standing-wave ratio, 90-92, 
102-104 

Instantaneous Voltage, 2, 3, 9, 10, 108 
Internal Inductance, 110,113 

Length, E I ectrical, 10 
Light, Velocity of, 5 



Loop Transmission, 126 
Loss: 

angle, 18, 19 
char:3cteristic insertion, 86-90, 92, 

102 
conductor, 5, 6, 12-14, 17, 18, 

11:2,113 
conjugate mismatch, 81-84, 129 
dissipation, 87, 96 
factor, 19 
formulas (flow graph), 129-130 
insertion, 84-90, 130 
mismatch, 79-84 
ratio, 14 
reflection, 33-35, 60, 61 
return, 33-35, 60, 61, 84 
tangent, 19 
transducer, 85-87, 130 
transmission, 60 
two-port, 84 

Lossless Line, 1, 109-111 
Lossless Two-Port, 79 
Lumped Impedance, 26 

Magnetic Field : 1-3, 10 
instantaneous magnitude, 2 
permeability, 7 

Maximum Power Transfer, 79-90 
Measuring Equipment, SWR, 136-149 
Mismatch: 

error, 88-90 
loss, 79-84 

Mixer, 148 
Mode: 

principal, 1 
higher order, 1, 22-25 

Neper, 14, 15 
Node, 123, 126 
Node Value or Signal, 126 
Noise, Error Due To, 144 

Nontouching Loop Rule, 126-127 
Normalized: 

admittance, 37, 66, 67 
admittance grid, 68 
impedance, 37 
impedance chart, 71 
impedance grid, 54 

One-Port Device, 73 
Open Stub, 41, 42 

Parameters: 
distributed model, 105 
normalized scattering, 7 4 
reflection, 74 
scattering, 73-78, 120-123 

Passive Two-Port, 78 
Path, 126 
Path Transmission, 126 
Permeability, Magnetic, 7, 110 
Permittivity: 

complex, 19 
complex relative, 19 
electric, 7 
relative, 7, 12 

Phase: 
angle, 9 
constant,8,9, 107,113 
factor, 8 
shift, 10 
velocity, 8, 23, 108 

Phasor, 9, 10 
Plane, Terminal or Reference, 27 
Power: 

available, 80, 81, 129 
delivered to load, 129 
gain, 14 
loss, 14 
maximum transfer, 79-80 
ratios, 14-16 

Principal Mode, 1 
Principal Mode Fields, 3 
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Probe and Tuner, 137 
Propagation Constant, 1 07, 111 

Radial Scales, 60-63 
Ratio: 

current, 14-16 
insertion standing wave, 90-92, 

102-104 
power, 14-16 
standing wave, 32-35,39,60,61 
voltage, 14-16 
voltage to current, 28 

Reactance Per Unit Length, 113 
Reciprocal Two-Port, 78 
Reference Plane, 27 
Reflected Wave, 26-35 
Reflection: 

loss, 33-35, 60, 61, 84 
parameters, 74 

Reflections, from Discontinuities, 
96-104 

Reflection Coefficient: 32, 35-42, 
44, 57' 60-62, 74, 75 
chart, 52 
complex plane, 93-95 
input and output, 90-96 
measurement of, 135-153 
plane, 51-54 

Reflectionless: 
source, 84 
termination, 31 

Reflectometer, 131-136 
Refraction, Index of, 6 
Relative Permittivity, 7, 12 
Resistance Per Unit Length, 113 
Resonance, 11 

H11 mode, 25 
Return Loss, 33-35,39, 60,61 

Sca,ttering Matrix: 120-123 
normalized parameters, 74 
parameters, 73-78 
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Shorted Stubs, 41, 43, 93 
Shunt Admittance Per Unit Length, 

114 
Signal-Flow Graphs, 120-129 
Skin Depth, 13 
Slotted Lines, 131-149 
Smith Chart, 51-72 

Source: 
equivalent circuit and flow graph, 

124 
node, 126 
reflectionless, 84 

Square-Law Response, 138,141,143 
Standing Waves, 5, 11, 26, 42-49 

lossless line, 43 
meter, 138 
technique, 135,149-153 

Standing-Wave Ratio 32-35, 44, 60, 61 
lossy line, 39 
insertion, 90-92, 102-104 

Stubs: 41, 42, 93 
adjustable, 138 

Surface Current Density, 112 
Surface Impedance, 112 
Symmetric Two-Port, 78 

Terminal: 
impedance,29,36,64,65 
plane, 27 

Terminated Line Calculations, 
115-119 

Termination Reflectionless, 31 
Thurston Bridge, 133 

Time-Domain Reflectometer, 131-132 
Total: 

current, 29, 30 
voltage, 29, 30, 77 

Transducer Loss, 85-87, 130 
Transformer, Ideal, 76,77 
Transmission Loss, 60 



Transverse Electromagnetic Mode, 1, 
22,96,97, 101,110 

Traveling Waves: 
sinusoidal, 5, 11, 26 
fields, 4 
power, 16 
on distributed parameter lines, 105 

Two-Port: 
"black box", 73 
discontinuities, 100-104 
electrically symmetric, 78 
lossy, 84 
lossless, 79 
passive, 78 
reciprocal, 78 

UHF Bridge, 134 
Unguided Waves, 1 

Velocity Factor, 6-8 
Velocity of Light, 5 
Velocity of Propagation: 

in cable, 10 
in dielectric, 7 
on lossless line, 5, 21, 22 
of TEM waves, 7 
of unguided waves, 5 

Velocity, Phase, 8, 23, 108 

Voltage: 

breakdown, 2, 3 
distribution, 47-49 

instantaneous,2,3,9, 10,108 
maxima and minima, 47-49, 

54,64 

rate of change with position, 106 
ratio, 14-16 
total, 29, 30, 77 

Wavelength, 8 
Wavelength Circles, 63-65 
Waves: 

forward (incident), 26, 28 
higher-mode, 1 
phase shift, 10 
reflected, 26-35 
standing, 5, 11, 26, 42-49 
transverse electromagnetic, 1, 4, 

96, 97, 101 
traveling, 4, 5, 11, 26 
unguided, 1 
velocity of propagation, 5, 7 

Width-of-Minimum Method, 153-156 

Zero- Loss Approximation: 
for characteristic impedance, 21 
for velocity of propagation, 21 
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